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Pavel Sergeevich Krasnoschekov (06.05.1935-26.02.2016) was born in
Kalach town, in Voronezhskiy region of Russia. In 1958, he graduated
from Faculty of Mechanics and Mathematics of Lomonosov Moscow
State University (MSU), and in 1961, he completed the aspirant (PhD)
program at Steklov Institute of Mathematics. He got his candidate degree
in 1964, and doctor of sciences in physics and mathematics degree in
1973. In his doctoral thesis, he studied models of large-scale military
conflicts. In 1984, he was elected as a corresponding member of Academy
of Sciences, and as a full member of Russian Academy of Sciences (RAS)
in 1992. Since 1966, and until the end of his life, he has been working
in Computing Center of RAS, as a deputy director (1989-2004), and
as a chief scientific researcher (2004-2016). Since 1975, he has also
been a head of Operations Research department at Lomonosov MSU.
In 1981, P.S. Krasnoschekov was rewarded the State Premium for his
work on theoretical foundations and practical applications of computer-
aided design. These results provided a possibility for the efficient design
and production of airplanes by Sukhoy plant since 1980. In 1990th,
P.S. Krasnoschekov has proposed and studied a model of collective
behavior with application to elections. Afterwards, he has been working
on foundations of theoretical physics in the general field theory. There
are more than 10 doctors and 25 candidates of sciences among his pupils.
His book “Principles of Models’ Design” (1983, co-authored by A. Petrov)
remains a basic textbook for students at Lomonosov MSU and at Moscow
Institute of Physics and Technology.
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Optimization methods

Charged balls method for finding the
minimum distance between two plane convex
smooth curves in three-dimensional space*

M.E. Abbasov
St. Petersburg State University, 7/9 Universitetskaya nab.,
St. Petersburg, 199034, Russia

We consider the problem

|z -yl — min
rzeX
yey

where X and Y are some plane convex smooth curves in R?. This problem
appears in astronomy, computer graphics and many other areas. New
recently described charged balls method [1], is proposed to solve the
problem. This method is based on mechanic analogies [2]. The approach
of passing from the original stationary problem to a nonstationary
mechanical system is quite common and was used by many researchers
to describe new effective optimization methods [3, 4].

It is proposed to place two oppositely charged balls onto the curves
in an arbitrary points. Balls will start to move towards the equilibrium
position, which obviously coincides with the solution of our problem. By

*This research is supported by RFBR, research project No. 16-31-00056 and by
Saint-Petersburg State University under Grant No 9.38.205.2014.
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means of Newton’s second low equations of motion can be derived:

miji(t) = Fi(t) + N1(t) + Ra(t)
mija(t) = Fa(t) + No(t) + Ra(t)

Here m is the mass of the balls, Fi, Fy are Coulomb forces, Ny, No
are normal forces, R;, Ry are viscous friction forces, needed to provide
the tendency of 71,72 (coordinates of the first and second balls
correspondingly) to the equilibrium. Using numerical method for solving
the obtained system of differential equations, we get the optimization
algorithm for our initial problem.

Numerical experiments and animations that illustrate the work of
the algorithm are presented.

References

1. Abbasov M.E. Charged balls method (in Russian). Preprint. http:
//www.apmath.spbu.ru/cnsa/pdf/2015/Charged_balls.pdf
//  Seminar on Constructive Nonsmooth Analysis and
Nondifferentiable Optimization (CNSA & NDO), 2015.

2. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical methods
(in Russian). Moscow: Nauka, 1987.

3. Polyak B.T. Introduction to Optimization. Optimization Software,
1987.

4. Vasiliev F.P. Optimization methods (in Russian). Moscow:
Factorial Press, 2002.
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Pontryagin maximum principle in optimal
control problems with geometric mixed
constraints®
A.V. Arutyunov, D.Yu. Karamzin, and F.L. Pereira
Peoples’ Friendship University of Russia, Federal Research Center

“Informatics and Control” of the Russian Academy of Sciences ,
University of Porto

Consider the optimal control problem

ta
Minimize  ¢(p) + folz,u, t)dt
t
subject to @ = f(x,'LlL,t), teT, (1)
R(z,u,t) € C,
peK.

Here, T' = [t1, t2] is the time interval (which we assume fixed, and ¢5 >
t1), & = %, x is state variable, which takes values in the Euclidean space
R™, p = (z1, 2z2) is the so called endpoint vector, where 1 = z(t1), 2 =
x(t2), and u(-) taking values in R™ is the control function. The vector-
function R : R" xR™ xR! — R” and the closed set C' define the geometric
mixed constraints. The control function u(-) is considered measurable
and essentially bounded, such that, together with the arc z(-), satisfies
the mixed constraints. The set K is closed and it defines the endpoint
constraints which have to be satisfied as well. If the mixed constraints
and the endpoint constraints are satisfied, then the control process (x, u)
is called admissible. The control process (z*,u*) is called optimal, if
the value of the minimizing functional at any admissible process is not
less than its value at («*,u*). For the classic formulation of the control
problem, see [1].

The mappings in (1),

0 :R?" — R,
f:R® xR™ x Rl = R",
fo:R" x R™ x R' = R, and
R:R" xR™ xRl - R"

satisfy the following main hypothesis. The maps f, fo, R are continuously
differentiable in (z,u) for a.a. t. On any bounded set, these maps and

*This research is supported by the Russian Foundation for Basic Research, Grant
numbers 15-01-04601, 16-01-60005, and by FCT (Portugal) under Grant PEst-OE-
EEI-UI0147-2014.
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their partial derivatives in (z,u) are bounded, Lebesgue measurable in ¢
for all (x,u), and continuous in (z, ) uniformly in ¢. The scalar function
© is continuously differentiable.

Everywhere in what follows, assume that problem (1) has a solution
(z*,u*).

Consider the set-valued map
U(z,t) :={ueR™: R(z,u,t) € C}.

Definition 1 A point u € U(x,t) is said to be regular provided that

*

Ne(R(z,u,t)) Nker 885 (x,u,t) = {0}. (2)

Here, the set N¢(y) designates the limiting normal cone in the sense
of Mordukhovich, [2], and A* denotes the conjugate matrix or operator
A. The regularity of the point u means that the so called Robinson
Constraint Qualification (RCQ) holds at u for the constraint system
R(z,u,t) € C, [3].

The condition (2) can be reformulated in the following way: there
exists a number € > 0 such that

5| 2 eyl ¥y € Ne(Ra )

The upper bound of all such €’s is also known as modulus of surjection
of the constraint system M : R(x,u,t) € C. Let us denote the modulus
of surjection to an arbitrary given constraint system V : F(z) € S at
point z, by sur V(z).*
Then, the regularity of the point v € U(xz,t) is equivalent to the
relation
sur M (z,u,t) > 0.

We denote by Useg (2, t) the subset of all regular points of U(x,t). The
subset of points for which sur M (x, u,t) > ¢ is denoted by UZ,, (z,t). Note

reg

*In the literature, the modulus of surjection is introduced for set-valued maps
G: X — 2Y. If spaces X, and Y are finite dimensional, then

sur G(zly) = inf{[z"] : 2" € D*G(z,y)(y"), [y*| = 1}.

Here, D*G(z,y) is the limiting coderivative of G at (z,y). By definition, sur G(z|y) =
oo when y ¢ G(z). If we set G(+) := R(z, -,t)—C, then sur M (z, u, t) = sur G(z, u, t|0).
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that this set may not be closed. It is clear that

Ureg (2, 1) Ureg(x,t) CU(z,t) Ve >0, and

Ue (xz,t) € UP (x,t) fora> >0,

reg reg

N

and Ul (x,t) = Ul(x,1).
The following concept corresponds to the classic approach to

regularity for mixed constraints. (The so-called strong regularity.)

Definition 2 The trajectory x*(t) is said to be regular w.r.t. the mized
constraints provided there is a number eg > 0 such that

U(z*(t),t) C U

reg

(x*(¢),t), for a.a.t € T.
However in what follows a weaker regularity condition will be used.

Definition 3 The trajectory x*(-) is said to be weakly reqular w.r.t. the
mized constraints provided there is a number eg > 0 such that
u*(t) € Ursy(z*(t),t) for a.a.t €T.

The regularity condition imposed in Definition 3 is weaker than the
one from Definition 2, as it holds only locally in a small tube about u*(¢),
but not for all feasible points. The price to pay for this sharp drop down
from the global to the local nature is the modified Weierstrass-Pontryagin
maximum condition (6) that it appears in Theorem 1. See the discussion
in [4] for more details and examples over the given concepts.

Along with the regularity, we also need the notion of the proper point.
Let us introduce it. Let § be a positive number and ug € U(z,t). Along
the constraint system M defining the mixed constraints in problem (1),
consider the associated constraint system

) R(z,u,t) € C,
M(S,uo { |U, — U0| S é.

Definition 4 A point ug € U(x,t) is said to be proper (or, a,y-proper)
provided there exist .,y > 0 such that

sur M, (z,u,t) > v Yu € U(z,t) : |[u—wuo| <0, Ve (0,a).

Results of [4] suggest a large subclass of the constraint systems for
which any regular point is proper. Such a subclass includes convex sets,
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semi-algebraic sets, or even more general than semi-algebraic type of
the sets, the sets which admit the so-called Whitney stratification, i.e.,
satisfying the Whitney condition b).

Let us impose the following condition.

Condition P) For all ¢ > 0, 34 > 0 such that, for any measurable
bounded selector u(t) of the map Ug, (t) := Ug,(x *( ),t), there exists a
measurable scalar function a(t) s.t. u(t) is a(t),y-proper for a.a. t.
Condition P) may seem somewhat cumbersome, but this condition
is satisfied for the above mentioned subclass of the constraint systems.
This means that the result following below is valid under C' convex, or
semi-algebraic, or, even, when the set C' admits Whitney stratification.
Following [1], we introduce the Hamilton-Pontryagin function

H(xv u, tv wv >‘) = <¢7 f(xv U, t)> - )\fO(xv u, t)
Under the weak regularity condition the following theorem is true.

Theorem 1 (Maximum Principle) Let € € (0,e9). Suppose that the
process (x*,u*) is optimal to problem (1), the arc x*(t) is weakly reqular
w.r.t. the mized constraints and that Condition P) is satisfied.

Then, there exist a number X\ > 0, an absolutely continuous function
¥ T — R™, an essentially bounded measurable function n : T — R",
and a constant k > 0, which all depend on e, such that

n(t) € conv Ne(R(t)) for a.a.t, (3)
90 = 2280 4052 0) for a.at, (@
(bt ~(t2) € AZE(57) + N, (5)
uecrlngfi(t) H(u,t) = H(t) for a.a.t, (6)
2t 090 =0 for a.a.t, ()
@) < KO+ D)) for a.at, ®)
and A+ |Y(t)] >0 VteT. (9)

Here, if some of the arguments of a function or of a set-valued map
are omitted, then it means that the extremal values x*(¢), u*(t), ¥(¢),
and A are in the place of the omitted arguments.
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This result covers the corresponding results from [5], where C' was
considered merely convex.
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The algorithm for auxiliary problem in
SQP-method

V.A. Bereznev
A.A. Dorodnitsyn’s Computing Center FRC IC of RAS, Moscow,
Russia

Currently methods of successive quadratic programming (SQP) are
among the most effective optimization methods.

Suppose that the function f : R, — R and map F : R, — R,, are
twice differentiable on all R,,. Consider the problem

f(z) > min, ze€X={xeR,|F(z) <0}. (1)

Let ¥ € R, — the current approximation of required stationary
point x* of problem (1). The essence of the SQP-method lies in the
approximation of this problem near the 2* of the quadratic programming
problem types

THE%?’C {Q(x) = %(x,Hx) + (d,x) —l—D} X ={zeR, | Az < b}, (2)
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where the symmetric matrix H = f”(z*) is assumed positive definite, so
g(z) strictly convex, D = f(z*)— (f' (%), 2*) + f'(2*), 2*) + % (2%, Ha*),
d= f'(z*)—Ha* A= f'(z*) — matrix of dimension m x n, rankA = m,
m < n, b= (f'(z%),2*) — F(z*) € R,,, X} # @.

The Lagrangian dual problem has the form

y=>0

min {w(y) = %<y, Qy) + (y,c) + C} , (3)

where Q@ = AH'A",c = AH'd—b, and constant C' = +(d, H'd)+D.
When you made assumptions about the matrices H and A matrix Q
positive definite.

First of all, note that the point 4° = —Q~'c is a point unconditional
minimum of the function ¢(y). Thus, if ¥ > 0, then this point — the
solution of the problem (3). It is obvious also, that the solution of the
problem is the point y* = 0 if ¢ > 0. Suppose that the vectors y° and ¢
contain negative components.

It is known that the problem (3) can be reduced to normal form
by using regular transformation of coordinates. Let the matrix U define
such the conversion, i.e. y = Uz and z = U~ !y. In this case transform
the problem (3) takes the form

. 1,
== 2 _ = >
Izrél?{F(Z) 5 ;:1 z —(z,p) + C} , Z={2€R, [Uz20}, (4)
where p = —U "¢ and the set Z is a pointed cone in R,, as the rank of

the matrix U is equal to m. Using, for example, the Lagrange’s method
full selection of square, consisting of (m — 1)-th steps of the same type of
conversion matrix coefficients (), the quadratic form can be reduced to a
canonical form. Consequently, this procedure requires O(m?) elementary
operations. For reduction of quadratic form to normal form it remains
to multiply the received regular matrix on diagonal that does not affect
the specified computational the complexity of the procedure.

Form problems of type (4) attractive for analysis because the
surfaces of level of the objective function of this problem are concentric
m-dimensional sphere centered at the point p. Consequently, the solution
z* of problem (4) is a projection of the point p on a cone Z. In other
words, the problem (4) an equivalent problem

mip { () = 3= 1?} 5)

z€Z
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To solve this problems we can use the proposed in [1] algorithm,
whose computational complexity is O(m?*). Hence the computational
complexity of the method of solution of the problem (2). Indeed, when
the reduction of the original problem to the dual problem (3) the most
time consuming operation is the inverse of the matrix H, which requires
O(n?®) elementary operations. Reduction of quadratic form (y,Qy) to
normal form associated with the implementation of O(m?) operations.
Finally, the solution of the problem (5), as already noted, provides for
O(m*) operations. Thus, to solve the problem (2) requires O(n® + m?*)
elementary operations. If z* is the solution of the problem (5), the
solution of the original problem (2) is a formula x* = H=1(d — ATUz*).

As shown in [1] the proposed algorithm is applicable to problem (2),
the matrix H which is nonnegative determined. Let f(z) bounded from
below on X. Then the solution of the problem exists. Denote by X* the
set of its solutions.

Using the nonsingular transformation y = V 'z will give quadratic
form to canonical form. Then the problem (2) takes the form

min {w(0) = 50890 - (e} ©

yey

where A — diagonal matrix of size n with elements \;,i = 1,7 on the
main diagonal, ¢ = dV")Y = {y € R, | Gy = b},G = AV. We assume
that the set Y is not empty and is bounded, i.e. there exists a constant
D that |ly|| < D for any y € Y. Denote by Y* the set of solutions of
the problem (6) and by ©* the optimal value of the objective function
of this problem.

Suppose the first k numbers \;, i = 1, k is positive and Mgy 1,. .., s

are zero. Let \* = min A\; > 0. Put A, = A+ ¢, where [ is the identity
i=T,k
matrix of size n, and € : 0 < € < A*, and consider the problem

min {we(y) = %<y, Acy) — (g, y>} ; (7)

yey

It is obvious that the problem (7) is a quadratic programming
problem with positive definite quadratic form, which we will use the
algorithm described above.

Let y¥ - solution of problem (7). In virtue of strong convexity of 1, (y)
is the solution unique. As shown in [1] for any p > 0 there is such € > 0
that ¥(yX) — ¥* < u, where y* — the solution of problem (7).
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Thus, it follows from the theorem of weak convergence of the
