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Pavel Sergeevi
h Krasnos
hekov (06.05.1935�26.02.2016) was born inKala
h town, in Voronezhskiy region of Russia. In 1958, he graduatedfrom Fa
ulty of Me
hani
s and Mathemati
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owState University (MSU), and in 1961, he 
ompleted the aspirant (PhD)program at Steklov Institute of Mathemati
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andidate degreein 1964, and do
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toral thesis, he studied models of large-s
ale military
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ted as a 
orresponding member of A
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ien
es, and as a full member of Russian A
ademy of S
ien
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e 1966, and until the end of his life, he has been workingin Computing Center of RAS, as a deputy dire
tor (1989�2004), andas a 
hief s
ienti�
 resear
her (2004�2016). Sin
e 1975, he has alsobeen a head of Operations Resear
h department at Lomonosov MSU.In 1981, P.S. Krasnos
hekov was rewarded the State Premium for hiswork on theoreti
al foundations and pra
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al appli
ations of 
omputer-aided design. These results provided a possibility for the e�
ient designand produ
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e 1980. In 1990th,P.S. Krasnos
hekov has proposed and studied a model of 
olle
tivebehavior with appli
ation to ele
tions. Afterwards, he has been workingon foundations of theoreti
al physi
s in the general �eld theory. Thereare more than 10 do
tors and 25 
andidates of s
ien
es among his pupils.His book �Prin
iples of Models' Design� (1983, 
o-authored by A. Petrov)remains a basi
 textbook for students at LomonosovMSU and at Mos
owInstitute of Physi
s and Te
hnology.
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Optimization methods
Charged balls method for �nding theminimum distan
e between two plane 
onvexsmooth 
urves in three-dimensional spa
e∗M.E. AbbasovSt. Petersburg State University, 7/9 Universitetskaya nab.,St. Petersburg, 199034, RussiaWe 
onsider the problem





‖x− y‖ −→ min

x ∈ X

y ∈ YwhereX and Y are some plane 
onvex smooth 
urves in R
3. This problemappears in astronomy, 
omputer graphi
s and many other areas. Newre
ently des
ribed 
harged balls method [1℄, is proposed to solve theproblem. This method is based on me
hani
 analogies [2℄. The approa
hof passing from the original stationary problem to a nonstationaryme
hani
al system is quite 
ommon and was used by many resear
hersto des
ribe new e�e
tive optimization methods [3, 4℄.It is proposed to pla
e two oppositely 
harged balls onto the 
urvesin an arbitrary points. Balls will start to move towards the equilibriumposition, whi
h obviously 
oin
ides with the solution of our problem. By

∗This resear
h is supported by RFBR, resear
h proje
t No. 16-31-00056 and bySaint-Petersburg State University under Grant No 9.38.205.2014.



Optimization methods 13means of Newton's se
ond low equations of motion 
an be derived:
{
mη̈1(t) = F1(t) +N1(t) +R1(t)

mη̈2(t) = F2(t) +N2(t) +R2(t)Here m is the mass of the balls, F1, F2 are Coulomb for
es, N1, N2are normal for
es, R1, R2 are vis
ous fri
tion for
es, needed to providethe tenden
y of η1, η2 (
oordinates of the �rst and se
ond balls
orrespondingly) to the equilibrium. Using numeri
al method for solvingthe obtained system of di�erential equations, we get the optimizationalgorithm for our initial problem.Numeri
al experiments and animations that illustrate the work ofthe algorithm are presented. Referen
es1. Abbasov M.E. Charged balls method (in Russian). Preprint. http://www.apmath.spbu.ru/
nsa/pdf/2015/Charged_balls.pdf// Seminar on Constru
tive Nonsmooth Analysis andNondi�erentiable Optimization (CNSA & NDO), 2015.2. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numeri
al methods(in Russian). Mos
ow: Nauka, 1987.3. Polyak B.T. Introdu
tion to Optimization. Optimization Software,1987.4. Vasiliev F.P. Optimization methods (in Russian). Mos
ow:Fa
torial Press, 2002.



14 Optimization methodsPontryagin maximum prin
iple in optimal
ontrol problems with geometri
 mixed
onstraints∗A.V. Arutyunov, D.Yu. Karamzin, and F.L. PereiraPeoples' Friendship University of Russia, Federal Resear
h Center�Informati
s and Control� of the Russian A
ademy of S
ien
es ,University of PortoConsider the optimal 
ontrol problem




Minimize ϕ(p) +

∫ t2

t1

f0(x, u, t)dtsubje
t to ẋ = f(x, u, t), t ∈ T,
R(x, u, t) ∈ C,
p ∈ K.

(1)Here, T = [t1, t2] is the time interval (whi
h we assume �xed, and t2 >
t1), ẋ = dx

dt , x is state variable, whi
h takes values in the Eu
lidean spa
e
R

n, p = (x1, x2) is the so 
alled endpoint ve
tor, where x1 = x(t1), x2 =
x(t2), and u(·) taking values in R

m is the 
ontrol fun
tion. The ve
tor-fun
tion R : Rn×R
m×R

1 → R
r and the 
losed set C de�ne the geometri
mixed 
onstraints. The 
ontrol fun
tion u(·) is 
onsidered measurableand essentially bounded, su
h that, together with the ar
 x(·), satis�esthe mixed 
onstraints. The set K is 
losed and it de�nes the endpoint
onstraints whi
h have to be satis�ed as well. If the mixed 
onstraintsand the endpoint 
onstraints are satis�ed, then the 
ontrol pro
ess (x, u)is 
alled admissible. The 
ontrol pro
ess (x∗, u∗) is 
alled optimal, ifthe value of the minimizing fun
tional at any admissible pro
ess is notless than its value at (x∗, u∗). For the 
lassi
 formulation of the 
ontrolproblem, see [1℄.The mappings in (1),

ϕ : R2n → R
1,

f : Rn × R
m × R

1 → R
n,

f0 : Rn × R
m × R

1 → R
1, and

R : Rn × R
m × R

1 → R
rsatisfy the following main hypothesis. The maps f, f0, R are 
ontinuouslydi�erentiable in (x, u) for a.a. t. On any bounded set, these maps and

∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h, Grantnumbers 15-01-04601, 16-01-60005, and by FCT (Portugal) under Grant PEst-OE-EEI-UI0147-2014.



Optimization methods 15their partial derivatives in (x, u) are bounded, Lebesgue measurable in tfor all (x, u), and 
ontinuous in (x, u) uniformly in t. The s
alar fun
tion
ϕ is 
ontinuously di�erentiable.Everywhere in what follows, assume that problem (1) has a solution
(x∗, u∗).Consider the set-valued map

U(x, t) := {u ∈ R
m : R(x, u, t) ∈ C}.De�nition 1 A point u ∈ U(x, t) is said to be regular provided that

NC(R(x, u, t)) ∩ ker
∂R∗

∂u
(x, u, t) = {0}. (2)Here, the set NC(y) designates the limiting normal 
one in the senseof Mordukhovi
h, [2℄, and A∗ denotes the 
onjugate matrix or operator

A. The regularity of the point u means that the so 
alled RobinsonConstraint Quali�
ation (RCQ) holds at u for the 
onstraint system
R(x, u, t) ∈ C, [3℄.The 
ondition (2) 
an be reformulated in the following way: thereexists a number ε > 0 su
h that

∣∣∣∣y
∂R

∂u
(x, u, t)

∣∣∣∣ ≥ ε|y|, ∀ y ∈ NC(R(x, u, t)).The upper bound of all su
h ε's is also known as modulus of surje
tionof the 
onstraint system M : R(x, u, t) ∈ C. Let us denote the modulusof surje
tion to an arbitrary given 
onstraint system V : F (z) ∈ S atpoint z, by surV (z).∗Then, the regularity of the point u ∈ U(x, t) is equivalent to therelation
surM(x, u, t) > 0.We denote by Ureg(x, t) the subset of all regular points of U(x, t). Thesubset of points for whi
h surM(x, u, t) ≥ ε is denoted by Uε

reg(x, t). Note
∗In the literature, the modulus of surje
tion is introdu
ed for set-valued maps

G : X → 2Y . If spa
es X, and Y are �nite dimensional, then
surG(x|y) = inf{|x∗| : x∗ ∈ D∗G(x, y)(y∗), |y∗| = 1}.Here, D∗G(x, y) is the limiting 
oderivative of G at (x, y). By de�nition, surG(x|y) =

∞ when y /∈ G(x). If we set G(·) := R(x, ·, t)−C, then surM(x, u, t) = surG(x, u, t|0).



16 Optimization methodsthat this set may not be 
losed. It is 
lear that
Uε
reg(x, t) ⊆ Ureg(x, t) ⊆ U(x, t) ∀ ε > 0, and

Uα
reg(x, t) ⊆ Uβ

reg(x, t) for α > β > 0,and U0
reg(x, t) = U(x, t).The following 
on
ept 
orresponds to the 
lassi
 approa
h toregularity for mixed 
onstraints. (The so-
alled strong regularity.)De�nition 2 The traje
tory x∗(t) is said to be regular w.r.t. the mixed
onstraints provided there is a number ε0 > 0 su
h that

U(x∗(t), t) ⊆ Uε0
reg(x

∗(t), t), for a.a. t ∈ T.However in what follows a weaker regularity 
ondition will be used.De�nition 3 The traje
tory x∗(·) is said to be weakly regular w.r.t. themixed 
onstraints provided there is a number ε0 > 0 su
h that
u∗(t) ∈ Uε0

reg(x
∗(t), t) for a.a. t ∈ T.The regularity 
ondition imposed in De�nition 3 is weaker than theone from De�nition 2, as it holds only lo
ally in a small tube about u∗(t),but not for all feasible points. The pri
e to pay for this sharp drop downfrom the global to the lo
al nature is the modi�edWeierstrass-Pontryaginmaximum 
ondition (6) that it appears in Theorem 1. See the dis
ussionin [4℄ for more details and examples over the given 
on
epts.Along with the regularity, we also need the notion of the proper point.Let us introdu
e it. Let δ be a positive number and u0 ∈ U(x, t). Alongthe 
onstraint system M de�ning the mixed 
onstraints in problem (1),
onsider the asso
iated 
onstraint system

Mδ,u0 :

{
R(x, u, t) ∈ C,
|u− u0| ≤ δ.De�nition 4 A point u0 ∈ U(x, t) is said to be proper (or, α, γ-proper)provided there exist α, γ > 0 su
h that

surMδ,u0(x, u, t) ≥ γ ∀u ∈ U(x, t) : |u− u0| ≤ δ, ∀ δ ∈ (0, α).Results of [4℄ suggest a large sub
lass of the 
onstraint systems forwhi
h any regular point is proper. Su
h a sub
lass in
ludes 
onvex sets,



Optimization methods 17semi-algebrai
 sets, or even more general than semi-algebrai
 type ofthe sets, the sets whi
h admit the so-
alled Whitney strati�
ation, i.e.,satisfying the Whitney 
ondition b).Let us impose the following 
ondition.Condition P) For all ε > 0, ∃ γ > 0 su
h that, for any measurablebounded sele
tor u(t) of the map Uε
reg(t) := Uε

reg(x
∗(t), t), there exists ameasurable s
alar fun
tion α(t) s.t. u(t) is α(t), γ-proper for a.a. t.Condition P) may seem somewhat 
umbersome, but this 
onditionis satis�ed for the above mentioned sub
lass of the 
onstraint systems.This means that the result following below is valid under C 
onvex, orsemi-algebrai
, or, even, when the set C admits Whitney strati�
ation.Following [1℄, we introdu
e the Hamilton-Pontryagin fun
tion

H(x, u, t, ψ, λ) =
〈
ψ, f(x, u, t)

〉
− λf0(x, u, t).Under the weak regularity 
ondition the following theorem is true.Theorem 1 (Maximum Prin
iple) Let ε ∈ (0, ε0). Suppose that thepro
ess (x∗, u∗) is optimal to problem (1), the ar
 x∗(t) is weakly regularw.r.t. the mixed 
onstraints and that Condition P) is satis�ed.Then, there exist a number λ ≥ 0, an absolutely 
ontinuous fun
tion

ψ : T → R
n, an essentially bounded measurable fun
tion η : T → R

r,and a 
onstant κ > 0, whi
h all depend on ε, su
h that
η(t) ∈ convNC(R(t)) for a.a. t, (3)
ψ̇(t) = −∂H

∂x
(t) + η(t)

∂R

∂x
(t) for a.a. t, (4)

(ψ(t1),−ψ(t2)) ∈ λ
∂ϕ

∂p
(p∗) +NK(p∗), (5)

max
u∈clUε

reg(t)
H(u, t) = H(t) for a.a. t, (6)

∂H

∂u
(t)− η(t)

∂R

∂u
(t) = 0 for a.a. t, (7)

|η(t)| ≤ κ(λ+ |ψ(t)|) for a.a. t, (8)and λ+ |ψ(t)| > 0 ∀ t ∈ T. (9)Here, if some of the arguments of a fun
tion or of a set-valued mapare omitted, then it means that the extremal values x∗(t), u∗(t), ψ(t),and λ are in the pla
e of the omitted arguments.



18 Optimization methodsThis result 
overs the 
orresponding results from [5℄, where C was
onsidered merely 
onvex. Referen
es1. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F.Mish
henko, Mathemati
al Theory of Optimal Pro
esses, Mos
ow,Nauka, 1983.2. B.S. Mordukhovi
h, Maximum prin
iple in problems of timeoptimal 
ontrol with nonsmooth 
onstraints, Appl. Math. Me
h.,40, 1976, pp. 960�969.3. S.M. Robinson, Regularity and stability for 
onvex multivaluedfun
tions, Math. Oper. Res., 1 (1976), pp. 130�143.4. A.V. Arutyunov, D.Yu. Karamzin, F.L. Pereira, G.N. Silva.Investigation of regularity 
onditions in optimal 
ontrol problemswith geometri
 mixed 
onstraints (2015) Optimization, 22 p.Arti
le in Press.5. A.V. Arutyunov, D.Yu. Karamzin, F.L. Pereira, MaximumPrin
iple in Problems with Mixed Constraints under WeakAssumptions of Regularity, J. of Optimization, Volume 59, Issue7, O
tober 2010, pp. 1067�1083.The algorithm for auxiliary problem inSQP-methodV.A. BereznevA.A. Dorodnitsyn's Computing Center FRC IC of RAS, Mos
ow,RussiaCurrently methods of su

essive quadrati
 programming (SQP) areamong the most e�e
tive optimization methods.Suppose that the fun
tion f : Rn → R and map F : Rn → Rm aretwi
e di�erentiable on all Rn. Consider the problem
f(x) → min, x ∈ X = {x ∈ Rn | F (x) ≤ 0}. (1)Let xk ∈ Rn � the 
urrent approximation of required stationarypoint x∗ of problem (1). The essen
e of the SQP-method lies in theapproximation of this problem near the xk of the quadrati
 programmingproblem types

min
x∈Xk

{
g(x) =

1

2
〈x,Hx〉+ 〈d, x〉 +D

}
, Xk = {x ∈ Rn | Ax ≤ b}, (2)



Optimization methods 19where the symmetri
 matrix H = f”(xk) is assumed positive de�nite, so
g(x) stri
tly 
onvex,D = f(xk)−〈f ′(xk), xk〉+f ′(xk), xk〉+ 1

2 〈xk, Hxk〉,
d = f ′(xk)−Hxk, A = f ′(xk) � matrix of dimension m×n, rankA = m,
m ≤ n, b = 〈f ′(xk), xk〉 − F (xk) ∈ Rm, Xk 6= ∅.The Lagrangian dual problem has the form

min
y≥0

{
ϕ(y) =

1

2
〈y,Qy〉+ 〈y, c〉+ C

}
, (3)where Q = AH−1A⊤, c = AH−1d−b, and 
onstant C = 1

2 〈d,H−1d〉+D.When you made assumptions about the matri
es H and A matrix Qpositive de�nite.First of all, note that the point y0 = −Q−1c is a point un
onditionalminimum of the fun
tion ϕ(y). Thus, if y0 ≥ 0, then this point � thesolution of the problem (3). It is obvious also, that the solution of theproblem is the point y∗ = 0 if c ≥ 0. Suppose that the ve
tors y0 and c
ontain negative 
omponents.It is known that the problem (3) 
an be redu
ed to normal formby using regular transformation of 
oordinates. Let the matrix U de�nesu
h the 
onversion, i.e. y = Uz and z = U−1y. In this 
ase transformthe problem (3) takes the form
min
z∈Z

{
F (z) =

1

2

m∑

i=1

z2i − 〈z, p〉+ C

}
, Z = {z ∈ Rm | Uz ≥ 0}, (4)where p = −U⊤c and the set Z is a pointed 
one in Rm as the rank ofthe matrix U is equal to m. Using, for example, the Lagrange's methodfull sele
tion of square, 
onsisting of (m−1)-th steps of the same type of
onversion matrix 
oe�
ients Q, the quadrati
 form 
an be redu
ed to a
anoni
al form. Consequently, this pro
edure requires O(m3) elementaryoperations. For redu
tion of quadrati
 form to normal form it remainsto multiply the re
eived regular matrix on diagonal that does not a�e
tthe spe
i�ed 
omputational the 
omplexity of the pro
edure.Form problems of type (4) attra
tive for analysis be
ause thesurfa
es of level of the obje
tive fun
tion of this problem are 
on
entri


m-dimensional sphere 
entered at the point p. Consequently, the solution
z∗ of problem (4) is a proje
tion of the point p on a 
one Z. In otherwords, the problem (4) an equivalent problem

min
z∈Z

{
ϕ(z) =

1

2
‖z − p‖2

}
. (5)



20 Optimization methodsTo solve this problems we 
an use the proposed in [1℄ algorithm,whose 
omputational 
omplexity is O(m4). Hen
e the 
omputational
omplexity of the method of solution of the problem (2). Indeed, whenthe redu
tion of the original problem to the dual problem (3) the mosttime 
onsuming operation is the inverse of the matrix H , whi
h requires
O(n3) elementary operations. Redu
tion of quadrati
 form 〈y,Qy〉 tonormal form asso
iated with the implementation of O(m3) operations.Finally, the solution of the problem (5), as already noted, provides for
O(m4) operations. Thus, to solve the problem (2) requires O(n3 +m4)elementary operations. If z∗ is the solution of the problem (5), thesolution of the original problem (2) is a formula x∗ = H−1(d−A⊤Uz∗).As shown in [1℄ the proposed algorithm is appli
able to problem (2),the matrix H whi
h is nonnegative determined. Let f(x) bounded frombelow on X . Then the solution of the problem exists. Denote by X∗ theset of its solutions.Using the nonsingular transformation y = V −1x will give quadrati
form to 
anoni
al form. Then the problem (2) takes the form

min
y∈Y

{
ψ(y) =

1

2
〈y,Λy〉 − 〈q, y〉

}
, (6)where Λ � diagonal matrix of size n with elements λi, i = 1, n on themain diagonal, q = dV ⊤, Y = {y ∈ Rn | Gy = b}, G = AV . We assumethat the set Y is not empty and is bounded, i.e. there exists a 
onstant

D that ‖y‖ ≤ D for any y ∈ Y . Denote by Y ∗ the set of solutions ofthe problem (6) and by ψ∗ the optimal value of the obje
tive fun
tionof this problem.Suppose the �rst k numbers λi, i = 1, k is positive and λk+1, . . . , λnare zero. Let λ∗ = min
i=1,k

λi > 0. Put Λε = Λ+ εI, where I is the identitymatrix of size n, and ε : 0 < ε < λ∗, and 
onsider the problem
min
y∈Y

{
ψε(y) =

1

2
〈y,Λεy〉 − 〈q, y〉

}
, (7)It is obvious that the problem (7) is a quadrati
 programmingproblem with positive de�nite quadrati
 form, whi
h we will use thealgorithm des
ribed above.Let y∗ε - solution of problem (7). In virtue of strong 
onvexity of ψε(y)is the solution unique. As shown in [1℄ for any µ > 0 there is su
h ε > 0that ψ(y∗ε )− ψ∗ < µ, where y∗ε � the solution of problem (7).



Optimization methods 21Thus, it follows from the theorem of weak 
onvergen
e of thealgorithm when ε→ 0. In other words, it is possible to obtain a solutionwith any given a

ura
y in fun
tionality, 
ost de
ision O(n3 + m4)operations. Referen
es1. Bereznev V.A. A polynomial algorithm for the quadrati
 program-ming problem // Russian J. of Numeri
al Anal. and Math. Model-ling, 2014, V.29, No 3, P.139-144.Newton-type method for variationalequilibrium problem∗A.N. Daryina and A.F. IzmailovDorodni
yn Computing Centre of RAS, Mos
ow State University,Mos
ow, RussiaWe 
onsider the Generalized Nash Equilibrium Problem (GNEP)with two players and shared 
onstraints:
f1(x

1, x2) → min
x1
,

g(x1, x2) ≤ 0,

f2(x
1, x2) → min

x2
,

g(x1, x2) ≤ 0,
(1)where the obje
tive fun
tions f1 : IRn1×IRn2 → IR, f2 : IRn1 ×IRn2 → IRand the mapping g : IRn1 × IRn2 → IRm are smooth.A point (x̄1, x̄2) ∈ IRn1 × IRn2 is 
alled generalized Nash equilibriumif x̄1 is a solution of the �rst problem in (1) with x2 = x̄2, and x̄2 is asolution of the se
ond problem in (1) with x1 = x̄1.GNEPs arise in various applied and theoreti
al areas: e
onomi
s,engineering, 
omputer s
ien
es, operations resear
h, et
. This problem
lass has been attra
ting re
ently mu
h attention, in parti
ular be
auseit turned out that the approa
hes and methods of modern variationalanalysis 
an be su

essfully applied in this 
ontext.For ea
h optimization problem in (1), de�ne its Lagrangian Lj :

IRn1 × IRn2 × IRm → IR,
Lj(x

1, x2, µj) = fj(x
1, x2) + 〈µj , g(x1, x2)〉, j = 1, 2,

∗This resear
h is supported in part by the Russian Foundation for Basi
 Resear
hGrant 14-01-00113, by the Russian S
ien
e Foundation Grant 15-11-10021, by thegrant of the Russian Federation President for the state support of leading s
ienti�
s
hools NSh-8215.2016.1, by CNPq Grant PVE 401119/2014-9, and by VolkswagenFoundation.



22 Optimization methodsand 
onsider the 
on
atenated Karush�Kuhn�Takker optimality 
ondi-tions:
∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0,

µ1 ≥ 0, 〈µ1, g(x1, x2)〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)〉 = 0,

g(x1, x2) ≤ 0.

(2)A generalized Nash equilibrium (x̄1, x̄2) is 
alled variational equilib-rium if the 
orresponding Lagrange multipliers of two players 
oin
ide,i.e., (x̄1, x̄2) satis�es (2) with µ̄1 = µ̄2 = µ̄ ∈ IRm. Therefore, variationalequilibria are 
hara
terized by system (2), where µ1 = µ2 = µ:
∂L1

∂x1
(x1, x2, µ) = 0,

∂L2

∂x2
(x1, x2, µ) = 0,

µ ≥ 0, g(x1, x2) ≤ 0, 〈µ, g(x1, x2)〉 = 0.

(3)Variational equilibria are very important from pra
ti
al point of view.For example, in various e
onomi
s appli
ations, Lagrange multipliers µ̄1and µ̄2 
an be interpreted as pri
es, and keeping them the same for bothplayers is ne
essary for a solution to make pra
ti
al sense.Systems (2) and (3) 
an be both interpreted as mixed 
omplemen-tarity problems. However, unlike for (2), solutions of system (3) 
annaturally be isolated, and hen
e, 
an be found by methods developed for�nding isolated solutions of mixed 
omplementarity problems; see [1�3℄and referen
es therein.In this work, we apply the algorithm from [2, 3℄ for �nding variationalequilibria. We establish global 
onvergen
e properties of the algorithm,and provide the assumptions guaranteeing superlinear 
onvergen
e rate.Referen
es1. Billups S.C. A homothopy-based algorithm for mixed 
omplemen-tarity problems // SIAM J. Optim. 2002. V. 12, � 3. P. 583�605.2. Daryina A.N., Izmailov A.F., Solodov M.V. A 
lass of a
tive-setNewton methods for mixed 
omplementarity problem // SIAM J.Optim. 2004. V. 15, � 2. P. 409�429.3. Daryina A.N., Izmailov A.F., Solodov M.V. Numeri
al results fora globalized a
tive-set Newton method for mixed 
omplementarityproblems // Comp. Appl. Math. 2005. V. 24. P. 293�316.



Optimization methods 23Study of a one-dimensional optimal 
ontrolproblem with a purely state-dependent 
ostA.V. Dmitruk and A.K. VdovinaLomonosov Mos
ow State University, Mos
ow, Russian FederationWe 
onsider the following optimal 
ontrol problem on a �xed timeinterval [0, T ]:
J(x(t)) =

∫ T

0

e−rt · Φ(x(t)) dt → max, (1)
{
ẋ = f(x) + u g(x), |u| ≤ 1,

x(0) = x0, x(T ) = xT ,
(2)where both the state x(·) and 
ontrol u(·) variables are s
alar fun
tions.We assume that the fun
tion Φ is 
ontinuous and unimodular. Thelatter means that it has the only maximum point x∗, and moreover,it in
reases for x < x∗ and de
reases for x > x∗. The fun
tions f and

g are di�erentiable, g(x) > 0. (Note that here we do not assume thedi�erentiability of Φ, neither the monotoni
ity of f, g.) The admissible
ontrol set is [−1, 1]. (The 
ase of arbitrary 
ontrol interval a ≤ u ≤ b
an be redu
ed to this one by a simple res
aling.) The time interval
[0, T ] is supposed to be big enough.We also assume that the Cau
hy problem ẋ = f(x) + ug(x), x(0) =
x0 has a solution on the whole interval [0, T ] for any admissible u(t),and that some of these solutions satisfy the required terminal 
ondition
x(T ) = xT .Sin
e the problem is linear in the 
ontrol and the admissible 
ontrolset is 
onvex and 
ompa
t, the 
lassi
al Filippov theorem [1,2℄ guaranteesthat an optimal traje
tory exists. Our aim is to �nd it.It follows from the properties of Φ that one should keep as 
loseas possible to the point x∗, preferably just stay at x∗. Therefore, the
hara
ter of optimal solution depends on whether the 
ontrol systemadmits staying at the point x∗ on some time interval, or not. If it does,we have ẋ = 0, then u = −f(x∗)/g(x∗), whi
h means that the solutiondepends on whether u∗ = −f(x∗)/g(x∗) is an admissible 
ontrol valueor not.The problem (1)�(2) appears in a large variety of appli
ations; forexample, some models of mathemati
al e
onomi
s 
an be redu
ed to



24 Optimization methodsit Usually, the only 
onsidered 
ase is when u∗ = −f(x∗)/g(x∗) isadmissible, even |f(x∗)/g(x∗)| < 1, therefore we 
all this 
ase standard.In a number of works (see e.g. [3 � 5℄, to mention just a few)this problem is solved by using the Pontryagin maximum prin
iple(PMP). However, it 
an be noted that the usage of su
h an advan
edtheoreti
al result as PMP is ex
essive in this standard 
ase, be
ause thesolution 
an be easily found on the base of well known fa
ts of 
lassi
alanalysis by using the 
on
ept of turnpike and the most rapid approa
hpath (MRAP). The last 
on
ept, in turn, is based on the T
hyaplygin
omparison theorem for solutions of one-dimensional ODEs [6℄. Someauthors use also the Green theorem (e.g., [7, 8℄), but this also seemsredundant. Below we provide a rigorous justi�
ation of these arguments.Moving on, we 
onsider a modi�
ation of problem (1)�(2), when the�nal state x(T ) is free and the 
ost involves the so-
alled salvage term.In this 
ase we give a 
omplete solution of the problem.All the above is related to the standard 
ase. However, the mostinteresting 
ase is the non-standard one, when |f(x∗)/g(x∗)| > 1. Asfar as we know, this 
ase was not yet studied, though it 
ould appearin di�erent models as well. Here we �nd an optimal traje
tory by using
lassi
al analysis, and then show that PMP gives the same result. Thespe
i�
 
ase of |f(x∗)/g(x∗)| = 1 is degenerate and not that interesting.Thus, in some 
ases, problem (1)�(2) and its modi�
ations 
an besolved without using of PMP. Let us emphasize that this is possible onlywhen the state variable is one-dimensional, be
ause in higher dimensionsthere are no 
omparison theorem for solutions of ODEs.Referen
es1. Filippov A.F. On Some Questions of the Optimal RegulatingTheory // Vestnik Mos
ov. Univ, Ser. Math-Me
h.,� 2. P. 25�32.2. Cesari L. Optimization Theory and Appli
ations, Springer, 1983.3. Ashmanov S.A. Introdu
tion to Mathemati
al E
onomi
s.Mos
ow: Mos
ow State University, 1980 (in Russian).4. Sethi S.P., Thompson G.L. Optimal Control Theory. Springer.2005.5. Geering H.P. Optimal Control with Engineering Appli
ations.Springer, 2007.6. T
haplygin S.A. A new method for approximate integration ofdi�erential equations, in "S.A. T
haplygin. Colle
ted works".Mos
ow: Nauka, 1976 (in Russian).



Optimization methods 257. Clark C.W., De Pree J.D. A Simple Linear Model for the OptimalExploration of Renewable Resourses // Applied Mathemati
s andOptimization. V. 5, 1979/ P. 181�196.Restoring the parameters of 
onjugatedpairs of linear algebrai
 equation systems bya set solutionV.I. Erokhin and A.S. KrasnikovHigher S
hool of Te
hnology and Energeti
s, St. Petersburg, Russia,Russian State So
ial University, Mos
ow, RussiaThe report observes the theorem of re
overing the parameters of a
onjugated pair of linear algebrai
 equation systems by a set solutionusing an interval 
riterion. Tasks in similar statements are 
onsidered inarti
les [5℄, [6℄.Theorem. The A ∈ R
m×n family of matri
es and the b ∈ R

m,
c ∈ R

n, families of ve
tors that guarantee that the set x̄ ∈ R
n and

ū ∈ R
m ve
tors belong to the

{
Ax = b,
u⊤A = c⊤,

(1)set of solutions of a 
onjugated pair of systems of linear algebrai
equations, and at the same time, ‖A‖ ≤ α, ‖b‖ ≤ β, ‖c‖ ≤ γ, where
α > 0, β > 0, γ > 0 
an be 
onstru
ted using

b = λ
ū

ū⊤ū
+ λ

(
Im − ūū⊤

ū⊤ū

)
∆b, (2)

c = λ
x̄

x̄⊤x̄
+ λ

(
In − x̄x̄⊤

x̄⊤x̄

)
∆c, (3)

A =
1

λ
bc⊤, (4)formulas, where ‖ · ‖ stands for, depending on the 
ontent, the Eu
lideanmatrix or ve
tor norm, the s
alar parameter λ is 
al
ulated using the

λ ≤ λ̄ = min

(
α

ᾱ
,
β

β̄
,
γ

γ̄

)
, (5)rule,

β̄ =

√
1

ū⊤ū
+∆b⊤

(
Im − ūū⊤

ū⊤ū

)
∆b, (6)
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γ̄ =

√
1

x̄⊤x̄
+∆c⊤

(
In − x̄x̄⊤

x̄⊤x̄

)
∆c, (7)

ᾱ = β̄ · γ̄, (8)
∆b ∈ R

m, ∆c ∈ R
n are random ve
tors, Im, In are singular matri
es ofsize m and n, a

ordingly.At the same time

‖A‖ = λ · ᾱ, (9)
‖b‖ = λ · β̄, (10)
‖c‖ = λ · γ̄. (11)On the basis of the theorem 1 it is possible to develop methods ofthe solution of the tasks des
ribed in arti
les [1℄�[4℄.The report ends with a numeri
al experiment with a model example.Initial parameters of the task (1):

x =




1
3
0
1
1



, u =




2
1
1
10


 .

α = 2, β = 1, γ = 0.5.We will set parameters ∆b, ∆c as follows
∆b =




0.850679
0.558565
0.901774
0.419518


 , ∆c =




0.358128
0.488988
0.255962
0.929169
0.466757



.A

ording to (5)�(8)

β̄ = 1.234372, γ̄ = 0.856068, ᾱ = 1.056707,

λ = 0.584066.



Optimization methods 27Further, from the (2)�(4) we obtain
A =




0.073855 −0.028283 0.109244 0.317574 0.120217
0.050392 −0.019298 0.074539 0.216686 0.082026
0.085080 −0.032581 0.125848 0.365843 0.138489

−0.018211 0.006974 −0.026938 −0.078308 −0.029644


 ,

b =




0.426799
0.291212
0.491668

−0.105241


 , c =




0.101069
−0.038704
0.149499
0.434594
0.164515



.Che
k shows what a

ording to (9)�(11) is 
arried out

‖A‖ = λ · ᾱ = 0.617186 < α = 2,

‖b‖ = λ · β̄ = 0.720954 < β = 1,

‖c‖ = λ · γ̄ = 0.5 = γ.The equations (1) are solvable.Referen
es1. Erokhin V.I. Matrix 
orre
tion of a dual pair of improperlinear programming problems // Computational Mathemati
s andMathemati
al Physi
s. 2007. V. 47. � 4. P. 564-578.2. Erokhin V.I., Krasnikov A.S., Khvostov M.N. Matrix 
orre
tionsminimal with respe
t to the eu
lidean norm for linear programmingproblems // Automation and Remote Control. 2012. �². 73. � 2.P 219-231.3. Erokhin V.I., Krasnikov A.S. Matrix 
orre
tion of a dual pairof improper linear programming problems with a blo
k stru
ture// Computational Mathemati
s and Mathemati
al Physi
s. 2008.�². 48. � 1. P 76-84.4. Erokhin V.I., Laptev A.Yu., Lisitsyn N.V. Re
on
iliation ofmaterial balan
e of a large petroleum re�nery in 
onditions ofin
omplete data // Journal of Computer and Systems S
ien
esInternational. 2010. V. 49. � 2. P. 295-305.5. Gorelik V.A., Erokhin V.I., Pe
henkin R.V. Minimax matrix
orre
tion of in
onsistent systems of linear algebrai
 equations withblo
k matri
es of 
oe�
ients // Journal of Computer and SystemsS
ien
es International. 2006. V. 45. � 5. P. 727-737.



28 Optimization methods6. Volkov V.V., Erokhin V.I. Tikhonov solutions of approximatelygiven systems of linear algebrai
 equations under �niteperturbations of their matri
es // Computational Mathemati
sand Mathemati
al Physi
s. 2010. V. 50. � 4. P. 589�605.Methods and software infrastru
ture for highperforman
e optimization∗Yu.G. Evtushenko and M.A. PosypkinDorodni
yn Computing Centre, FRC CSC RAS, Mos
ow, RussiaWe 
onsider the following optimization problem
f(x) → min, s.t. g(x) ≤ 0, (1)where f(·) : Rn → R and g(·) : Rn → R

m are 
ontinuous mappings.Finding the exa
t minimum f∗ is usually impossible. Thus the goal isto �nd ε, δ-solution de�ned as follows: x ∈ R
n, gi(x) ≤ δ, i = 1, . . . ,m,

f(x) ≤ f∗ + ε.Te Non-uniform Covering Method proposed in [1℄ is able to �nd ε, δ-solution in a �nite number of steps. For realisti
 problems the numberof steps 
an be quite large. Numerous te
hniques to redu
e the numberof steps have been proposed so far [2,3℄.To support a variety of 
overing pro
edures we developed an obje
t-oriented �exible and extensible software infrastru
ture. In this frameworkone 
an easily implement new methods to 
onstru
t 
overages and
ombine them.The 
ore 
lass of this software environment is Cover.Covers are 
onstru
ted by 
over fa
tories inherited from the abstra
t
lassCoverFa
tory. At the moment fa
tories relying on 
omparing lower andupper bounds on an obje
tive fun
tion, �rst and se
ond order optimality
onditions are implemented.Though advan
ed 
overing te
hniques signi�
antly in
reases theperforman
e of the method for many pra
ti
al problems the amount ofrequired resour
es is beyond the 
apa
ity of a single CPU 
omputer. Forsu
h problems the use of parallel and distributed 
omputing is inevitable.We 
reated a software infrastru
ture that supports parallel(distributed memory) tree sear
h s
heme. The approa
h implementedby our tool separates the problem dependent part from the parallel
∗This resear
h is supported by RFBR proje
t 14-07-00805 and by Ministry ofS
ien
e and Edu
ation of Republi
 of Kazakhstan, proje
t 0115PK00554.



Optimization methods 29implementation and from the logi
 of parallelization. The main issuein parallel tree sear
h is load balan
ing. Sin
e the stru
ture of the treeis not known in advan
e the stati
 distribution is usually not e�
ient.To over
ome this problem parallel solvers use dynami
 load balan
ing todistribute the 
omputational load among pro
essors.In our tool spe
ial 
omponents 
alled s
hedulers are used formanaging parallel resolution pro
ess. A s
heduler intera
t via a stri
tlyde�ned interfa
e with a solver and a parallel platform. It 
ommuni
ateswith the parallel platform by means of spe
ial 
ommands su
h as:
• send N subproblems to the pro
ess P;
• send in
umbent to the pro
ess P;
• send 
ontrol 
ommand to the pro
ess P;
• re
ieve information (subproblems, in
umbent or 
ontrol 
ommand)from the pro
ess P.It is worth noting that this set of 
ommands is problem-independent. And thus it is possible to separate the logi
 of the parallelpro
essing management and the problem spe
i�
 implementation ofthose 
ommands. Su
h separation is important for several reasons.First, it saves e�orts when implementing new problem be
ause only theproblem-spe
i�
 part has to be implemented and the s
heduler is reused.Se
ond, 
ommon part 
an be a subje
t for a separate study. For instan
eit is possible to 
ompare di�erent load balan
ing strategies on a simulatoror 
he
k the 
orre
tness of the parallel algorithm, e.g. identify possibledeadlo
ks.The simulator transparently substitutes the real parallel system andthe real solver. Thus we 
an 
onveniently evaluate the performan
e ofs
heduling algorithms in
orporated in our tool. Besides the simulator wealso developed a graphi
al front-end that visualizes the pro
essors loadand 
ommuni
ation among pro
essors.Referen
es1. Evtushenko Y. G. Numeri
al methods for �nding globalextrema (
ase of a non-uniform mesh) //USSR ComputationalMathemati
s and Mathemati
al Physi
s. 1971. V. 11. No. 6. P. 38�54.



30 Optimization methods2. Evtushenko Y., Posypkin M. A deterministi
 approa
h to globalbox-
onstrained optimization //Optimization Letters. 2013. V. 7.No. 4. P. 819�829.3. Evtushenko Y. G., Posypkin M. A. Versions of the methodof nonuniform 
overings for global optimization of mixedinteger nonlinear problems // Doklady Mathemati
s. MAIKNauka/Interperiodi
a, 2011. V. 83. No. 2. P. 268�271.The Minkowski di�eren
e of sets with the
onstraint stru
tureZ.R. GabidullinaKazan Federal University, Kazan, RussiaThe analyti
al expression of the Minkowski di�eren
e of sets has itsown independent signi�
an
e in many areas of mathemati
al s
ien
es.In [1℄�[4℄, we used the Minkowski di�eren
e for investigation of the setsseparation problems. In this thesis, we shall demonstrate that the Min-kowski di�eren
e is a useful tool for solving of the variational inequalitiesinter
onne
ted with the linear separation problems.In a wide range of appli
ations of variational inequalities, the set Φis determined by a system of inequalities:
Φ = {x ∈ X : fi(x) ≤ bi, i ∈ I}, I = {1, 2, · · · ,m}, (1)where fi(x), i ∈ I are arbitrary real-s
aled quasi-
onvex fun
tions whi
hare de�ned on a 
onvex set X ⊆ R

n.The basi
 impediment to making use of operation of Minkowskidifferen
e are problems related to its implementation for di�erentformulations of sets.Let us re
all that, in [2℄, we proved that the set Φ−Ψ 
oin
ides withthe 
onvex hull of the ve
tors zk −pl, k ∈ K, l ∈ L if Φ = co{zk}k∈K ,
Ψ = co{pl}l∈L, K = {1, 2, · · · , r}, L = {1, 2, · · · , s}.Next, we presented in [4℄ the analyti
al expression of the Minkowskidi�eren
e of two sets Φ and Ψ, when Φ is given by (1), and Ψ isan arbitrarily de�ned set.Let be given an arbitrary set Ψ ⊆ R

n, the set Φ be de�ned by (1),
X = R

n, then Φ−Ψ = Φ1, where
Φ1 = {x ∈ R

n : fi(x+ y) ≤ bi, i ∈ I, y ∈ Ψ},

I = {1, 2, · · · ,m}, Φ−Ψ = {z ∈ R
n : z = x− y, x ∈ Φ, y ∈ Ψ}.



Optimization methods 31From above, we observe that it really did not matter how the set Ψwas de�ned analyti
ally or by some other way. For example, Ψ may bede�ned in a similar way as the set Φ:
Ψ := {x ∈ R

n : gj(x) ≤ dj , j ∈ J}, J = {1, 2, · · · , k}.It is quite 
lear that if the set Φ is pres
ribed by stri
t 
onstraints, then
Φ1 should be de�ned by the system of the stri
t inequalities, too.In parti
ular, the set Ψ 
an 
ontain a single point. For this 
ase, we
onsider below some examples.1. Let Φ 6= ∅ be de�ned by (1), p ∈ R

n,
Φ1 = {x ∈ R

n : fi(x + p) ≤ bi, i ∈ I}, I = {1, 2, · · · ,m},then Φ− p = Φ1, where Φ− p = {z ∈ R
n : z = x− p, x ∈ Φ}.2. If p ∈ R

n, i ∈ I, I = {1, 2, · · · ,m}, Φ 6= ∅,

Φ = {x ∈ R
n : 〈ai, x〉 ≤ bi, ai ∈ R

n, bi ∈ R
1}, (2)then Φ− p = {x ∈ R

n : 〈ai, x〉 ≤ b̃i, b̃i = bi − 〈ai, p〉, i ∈ I}.3. If Φ = {x ∈ R
n : l ≤ x ≤ u, l, u ∈ R

n}, Φ 6= ∅, then
Φ− p = {x ∈ R

n : l − p ≤ x ≤ u− p}.4. If Φ = {x ∈ R
n : ‖x− o‖2 ≤ r2, o ∈ R

n, r ∈ R
1
+}, then

Φ− p = {x ∈ R
n : ‖x− ō‖2 ≤ r2, ō = o− p}.5. If p = (p1, · · · , pn),Φ = R

n
+ = {x = (x1, · · · , xn) : xj ≥ 0, j = 1, n},then

Φ− p = {x = (x1, · · · , xn) : xj ≥ −pj , j = 1, n}.Let the set Φ be given by (2) and Ψ be des
ribed as follows
Ψ = {y ∈ R

n : 〈cj , y〉 ≤ dj , cj ∈ R
n, dj ∈ R

1}, J = {1, 2, · · · , k},then
Φ−Ψ = {x ∈ R

n : 〈ai, x〉+ 〈ai, y〉 ≤ bi, y ∈ Ψ}.Let be given the arbitrary nonempty sets Φ, Ψ ⊂ R
n. If thevariational inequality 
onsists in determining a ve
tor c ∈ R

n\{0} su
hthat
〈c, x− y − c〉 ≥ 0 x ∈ Φ, y ∈ Ψ, (3)
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an be solved by multiple sequential proje
tions to ea
h region.Instead of this method for solving of (3), we 
an make use the singleproje
tion of the origin of R2n onto the Minkowski di�eren
e of the sets
Φ and Ψ.Naturally, if the sets Φ and Ψ are nonempty 
onvex and 
losed, andat least one of them is bounded, then Φ−Ψ is a 
onvex and 
losed set.Consequently, the operation of proje
tion onto Φ−Ψ is well de�ned.Let PΦ−Ψ(0) stand for the proje
tion of the origin onto Φ − Ψ. If
PΦ−Ψ(0) 6= 0, then it obviously holds that 0 /∈ Φ−Ψ. Therefore, thereexist the points x̄ ∈ Φ and ȳ ∈ Ψ su
h that x̄− ȳ = PΦ−Ψ(0), x̄ 6= ȳ.These 
losest points of Φ and Ψ 
an be found by solving of the followingsystem:

〈c, x− x̄〉 ≥ 0, x ∈ Φ, (4)
〈c, ȳ − y〉 ≥ 0, y ∈ Ψ, (5)where c = PΦ−Ψ(0).Under assumption that both sets Φ and Ψ are bounded, the
ontinuous fun
tion 〈c, x〉 attains its maximum and minimum valueson the 
ompa
t sets Φ and Ψ. As a 
onsequen
e, the points x̄ and

ȳ satisfying to (4)�(5) 
an be found by solving the following problems,respe
tively:
min
x∈Φ

〈c, x〉,

max
y∈Ψ

〈c, y〉.Let us noti
e that the ve
tor (x̄, ȳ), x̄ ∈ Φ, ȳ ∈ Ψ satisfying to(4)�(5) is the solution of the following problem:
min

x∈Φ, y∈Ψ
‖x− y‖2.So, the problem of determining the distan
e between the sets Φ and Ψ
an be solved by redu
tion to the next problem:

min
z∈Φ−Ψ

‖z‖2.Consequently, the distan
e between the sets Φ and Ψ is equal to
‖PΦ−Ψ(0)‖. Referen
es1. Gabidullina Z.R. A Theorem on Separability of a ConvexPolyhedron from Zero point of the Spa
e and Its Appli
ations in



Optimization methods 33Optimization // Izvestiya VUZ. Matematika. 2006. � 12. P. 21�26. (Engl.trasl. Russian Mathemati
s (Iz.VUZ). 2006. V. 50, � 12.P. 18�23.2. Gabidullina Z.R. A Theorem on Stri
t Separability of ConvexPolyhedra and Its Appli
ations in Optimization // Journal ofOptimization Theory and Appli
ations. 2011. V. 148, � 3. P. 550�5703. Gabidullina Z.R. A Linear Separability Criterion for Setsof Eu
lidean Spa
e // Journal of Optimization Theory andAppli
ations. 2013. V. 158, � 1. P. 145�1714. Gabidullina Z.R. Ne
essary and Su�
ient Conditionsfor Emptiness of the Cones of Generalized SupportVe
tors // Optimization Letters. 2015. V. 9, � 4.P.693-729, Springer Berlin Heidelberg, Available athttp://link.springer.
om/arti
le/10.1007/s11590-014-0771-5Properties of the shortest 
urve in a
ompound domain∗A.V. Gorba
heva* and D.Yu. Karamzin*** Peoples' Friendship University of Russia, Mos
ow, Russia** Federal Resear
h Center �Computer S
ien
e and Control� of theRussian A
ademy of S
ien
es, Mos
ow, RussiaA 
losed state domain given by 
onstraints of the form g1(x) = 0 and
g2(x) ≤ 0 is 
onsidered, where x ∈ Rn and g1 and g2 are given fun
tionsranging in Rk1 and Rk2 , respe
tively. Su
h a state domain will be 
alled a
ompound domain in what follows. In addition, throughout the followingwe assume that the ve
tors ∂gi

1

∂x (x), i = 1, ..., k1, and ∂gj
2

∂x (x), j ∈ J(x),are linearly independent for every x. Here J(x) := {j : gj2(x) = 0}.Some properties of the shortest 
urve in a 
ompound domain arestudied. The equation of the shortest 
urve is derived. It is important tonote the following. It might seem that the equation of the shortest 
urvein the presen
e of inequalities is a trivial 
onsequen
e of the optimalityprin
iple. Indeed, any part of the shortest 
urve is a shortest 
urve itself;then, by 
onsidering its separate parts lying on the boundary of the
∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h(proje
ts 16-01-00283, 16-31-60005), and by the grant of the President of the RussianFederation MD-4639.2016.1.



34 Optimization methodsdomain x : g2(x) ≤ 0 and inside it (assume that k2 = 1), we obtainthe desired result. This method applies if these parts lie entirely on theboundary or inside the domain. However, su
h a part of the shortest
urve lying entirely on the domain boundary does not ne
essarily exist,while the set of points of exit of the shortest 
urve to the boundary
an be, for example, a Cantor set of positive measure. Let us give anexample.Let C ⊂ [0, 1] be a Cantor set of positive measure. Sin
e C is 
losed,it follows from the Whitney theorem that there exists a nonpositivefun
tion f : [0, 1] → R su
h that f−1({0}) = C. Take n = 2 and g2(x) =
f(x1) − x2 and assume that equality 
onstraints are absent. Obviously,the shortest 
urve joining the points (0, 0) and (1, 0) is de�ned by theformulas x1(t) = t, x2(t) = 0, t ∈ [0, 1]. One 
an readily see that the set
C×{0} lies on the boundary of the domain, and the set ([0, 1]\C)×{0}lies in its interior.Note also that we should study the 
lass of fun
tions to whi
h theshortest 
urve belongs. Obviously, in the presen
e of inequalities it doesnot belong to the 
lass C2([0, 1]), in 
ontrast to the geodesi
s. One 
anreadily 
onstru
t a related example.Consider the 
ompound domain

M := {x ∈ Rn : g1(x) = 0, g2(x) ≤ 0},and let A and B be two given points in M , A 6= B. Consider a smooth
urve x(t) : [0, 1] →M lying entirely in M and joining the points A and
B; i.e. x(0) = A and x(1) = B. (We assume that M is a 
onne
teddomain; then, by virtue of the above-imposed regularity 
onditions,there always exists su
h a 
urve.) The shortest 
urve in M is de�nedas a 
ontinuously di�erentiable regular 
urve x∗(t) with the naturalparametrization that has the minimum length of all smooth 
urves x(t)that lie in M and 
onne
t the points A and B.Consider the 
ontrol problem

1

2

∫ 1

0

|u(t)|2dt→ min, ẋ = u,

g1(x) = 0, g2(x) ≤ 0, (1)

u ∈ Rn, x(0) = A, x(1) = B.Lemma 1 There exists a shortest 
urve x∗(t) 
onne
ting the points
A and B. Every shortest 
urve is a solution of problem (1). The 
onverseis also true: ea
h solution of problem (1) is a shortest 
urve.
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urve x∗(t) is a fun
tion of the 
lass
W2,∞([0, 1]). In the 
ase without inequality 
onstraints, it belongs tothe 
lass C2([0, 1]).Lemma 3 The shortest 
urve x∗(t) satis�es the equation

ẍ = −g′∗x (x)P ∗(x)[P (x)g′x(x)g
′∗
x (x)P ∗(x)]−1P (x)g′′xx[ẋ, ẋ] (2)almost everywhere on [0, 1℄.Above, where P(x) is the (k1 + k2)× (k1 + |J(x)|) matrix that takesea
h ve
tor y = (y1, y2, ..., yk1 , yk1+1, yk1+2, ..., yk1+k2) to the ve
tor

ỹ = (y1, y2, ..., yk1 , yk1+j1 , yk1+j2 , ..., yk1+jk), where j1, j2, ..., jk are theindi
es forming the set J(x) and g = (g1, g2).Remark 1Along with Eq. (2), we have the equation of the shortest 
urve in thesimpler geometri
 form
ẍ ∈ NM (x).Remark 2If equality state 
onstraints are absent, then the problem on theshortest 
urve for a 
omplex- shaped domain is also referred to asthe obsta
le bypass problem [1, p. 66℄. The possibility to derive theequation of the shortest 
urve from the Pontryagin maximum prin
iplewas pointed out by Gamkrelidze [2; 3, p. 347℄.The proofs of these results 
an be found in [4℄. The proofs use thetheory developed in [5℄. Referen
es1. Arnol'd, V.I. Teoriya katastrof (Catastrophe Theory). Mos
ow:Nauka, 1990.2. Gamkrelidze R.V. Time-Optimal Pro
esses with Bounded StateCoordinates // Dokl. Akad. Nauk SSSR. 1959. V. 125, N. 3. P. 475�478.3. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mish
henkoE.F. Matemati
heskaya teoriya optimal'nykh protsessov(Mathemati
al Theory of Optimal Pro
esses). Mos
ow: Nauka,1983.4. Davydova A.V., Karamzin D.Yu. On some properties of theshortest 
urve in a 
ompound domain // Di�erential Equations.2015. V. 51, N. 12. P. 1626�1636.5. Arutyunov A.V., Karamzin D.Yu. Non-Degenerate Ne
essaryOptimality Conditions for the Optimal Control Problem with



36 Optimization methodsEquality-Type State Constraints // J. of Global Optimization.2015.Fra
tional programming via D.C.optimization∗T.V. Gruzdeva and A.S. StrekalovskyMatrosov Institute for System Dynami
s and Control Theory of SBRAS, Irkutsk, RussiaThe paper addresses the development of e�
ient methods forfra
tional programming problems [1℄ as follows
(P) f(x) :=

m∑

i=1

ψi(x)

φi(x)
↓ min

x
, x ∈ S,where φi(x) > 0, ψi(x) > 0, i = 1, . . . ,m, ∀x ∈ S.This is a non
onvex problem with multiple lo
al extremum whi
hbelongs to a 
lass of global optimization.Together with problem (P) we will also 
onsider the followingparametri
 optimization problem

(Pα) Φα(x)
△
= Φ(x, α) :=

m∑

i=1

[ψi(x)− αiφi(x)] ↓ min
x
, x ∈ S,where α = (α1, . . . , αm)⊤ ∈ IRm is the ve
torial parameter.Let us introdu
e then the optimal value fun
tion V(α) ofProblem (Pα) as follows

V(α) := inf
x
{Φα(x) | x ∈ S}.In addition, suppose that the following assumptions are ful�lled:

(H1)

(a) V(α) > −∞ ∀α ∈ K,where K is a 
onvex set from IRm;

(b) ∀α ∈ K ⊂ IRm there exists a solution z = z(α) toProblem (Pα), i.e. V(α) = m∑
i=1

[ψi(z)− αiφi(z)].

∗This resear
h is supported by the Russian S
ien
e Foundation (grant 15-11-20015).



Optimization methods 37Then it takes pla
e the redu
tion (equivalen
e) theorem for the fra
ti-onal programming problem with d.
. fun
tions and the solution of theequation V(α) = 0 with the ve
tor variable α = (α1, . . . , αm)T satisfyingthe following nonnegativity assumption
(H(α)) ψi(x) − αiφi(x) ≥ 0 ∀x ∈ S, i = 1, . . . ,m.Theorem. Suppose that in Problem (P) the assumptions (H1) areful�lled. In addition, let there exist a ve
tor

α0 = (α01, . . . , α0m)⊤ ∈ K ⊂ IRmfor whi
h the assumption (H(α0)) is satis�ed.Besides, suppose that in Problem (Pα0) the following equality holds
V(α0)

△
= min

x

{
m∑

i=1

[ψi(x)− α0iφi(x)] | x ∈ S

}
= 0.Then any solution z = z(α0) to Problem (Pα0) turns out to be asolution to Problem (P), so that z ∈ Sol(Pα0) ⊂ Sol(P).This theorem opens the door to a justi�ed use of the Dinkelba
h'sapproa
h for solving fra
tional programming problems with the goalfun
tion presented by a sum of fra
tions all given by d.
. fun
tions.Therefore, instead of solving Problem (P) we propose to 
ombine asolving Problem (Pα) with a sear
h with respe
t to parameter (α ∈ IRm

+ )in order to �nd a ve
tor (α0 ∈ IRm
+ ) su
h that

V(α0) = V(Pα0) = 0.In this situation for every (α ∈ IRm
+ ) we must be able to �nd a globalsolution to Problem (Pα) and we 
an do it using the global sear
h theoryfor d.
. optimization problems [2℄.Besides, we 
ombine the developed method with another approa
h tothe fra
tional programming whi
h implies the redu
tion to the optimi-zation problem of the form [3℄

(P1)





m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

ψi(x)− αiφi(x) ≤ 0, i = 1, . . . ,m,



38 Optimization methodswhere φi(x) > 0, ψi(x) > 0, i = 1, . . . ,m, ∀x ∈ S.Furthermore, using the global sear
h theory for problems with d.
.
onstraints [4℄�[6℄, we proposed the global sear
h method for solving thefra
tional programming problem (P) via the 
ombination of methods forproblems (Pα) and (P1).Finally, rather large �eld of 
omputational simulation testings havebeen 
arried out for some spe
ial test fun
tions formed by linear and/or
onvex quadrati
 fun
tions.First, the 
omputational experiments have been performed on thesmall dimension's examples from [7℄. Afterwords, the approa
h has beentested on spe
ially designed test problems up to dimension n = m = 100.At the end, the test problems of dimension up to n = m = 200 designedwith the help of [8℄ have been also solved by the developed algorithms.After analysis the results of 
omputational simulations look ratherpromising and 
ompetitive. Referen
es1. Frenk J. B. G., S
haible S. Fra
tional programming // Handbookof Generalized Convexity and Generalized Monotoni
ity (ed. by N.Hadjisavvas, S. Komlosi, S. S
haible), Series Non
onvex Optimiza-tion and Its Appli
ations, V. 76, Springer, 2002. P. 335�386.2. Strekalovsky A.S. Elements of non
onvex optimization.Novosibirsk: Nauka, 2003 (in Russian).3. Dur M., Horst R., Thoai N.V. Solving sum-of-ratios fra
tionalprograms using e�
ient points // Optimization. 2001. V. 49.P. 447�466.4. Strekalovsky A.S. Minimizing sequen
es in problems with d.
.
onstraints // Computational Mathemati
s and Mathemati
alPhysi
s. 2005. V. 45(3). P. 435�447.5. Strekalovsky A.S. On lo
al sear
h in d.
. optimization problems //Applied Mathemati
s and Computation. 2015. V. 255. P. 73�83.6. Gruzdeva T.V., Strekalovsky A.S. Lo
al sear
h in problems withnon
onvex 
onstraints // Computational Mathemati
s and Mathe-mati
al Physi
s. 2007. V. 47(3). P. 381�396.7. Ma B., Geng L., Yin J., Fan L. An e�e
tive algorithm for globallysolving a 
lass of linear fra
tional programming problem // Journalof software. 2013. V. 8(1). P. 118�125.8. Jong Y.-C. An e�
ient global optimization algorithm for nonlinearsum-of-ratios problem // Repository of e-prints about optimization
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s. 2012. http://www.optimization-online.org/DB_FILE/2012/08/3586.pdfWhen the solutions of 
omplementarityproblems are monotone with respe
t toparameters∗V.V. Kalashnikov1,2, N.I. Kalashnykova3, and A. Gar
��a-Mart��nez2
1Central E
onomi
s and Mathemati
s Institute (CEMI), Mos
ow,Russian Federation
2Te
nol�ogi
o de Monterrey (ITESM), Monterrey, Nuevo Le�on,Mexi
o

3Universidad Aut�onoma de Nuevo Le�on (UANL), San Ni
ol�as de losGarza, Nuevo Le�on, Mexi
oIn many applied problems (su
h as, e.g., elasto-hydrodynami
lubri
ation problem, some e
onomi
 equilibrium problems, et
.), one ofthe important question is if 
ertain 
omplementarity problem's solutionis monotone with respe
t to parameters. Our paper investigates thisquestion and provides several su�
ient 
onditions that guarantee su
ha monotoni
ity of the solutions to linear and nonlinear 
omplementarityproblems with parameters. In the majority of 
ases, it is required thatthe prin
ipal mapping of the 
omplementarity problem be monotone byde
ision variables and, vi
e versa, antitone with respe
t to parameters.The nonlinear 
omplementarity problem (CP) is well-known and 
anbe stated as follows: Given a 
ontinuous mapping f : Rn
+ → Rn, �nd an

n-ve
tor z ∈ Rn su
h that
z ≥ 0, f(z) ≥ 0, and zT f(z) = 0. (1)A parametri
 version of the linear 
omplementarity problem (i.e.,when f is a�ne) was formulated by Maier [1℄. The problem ofmonotoni
ity of solutions in the parametri
 linear 
omplementarityproblem (PLCP) was also studied by Cottle [2℄ who assumed the matrix

M of the parametrized mapping f(z; t) =Mz+q+tp either to be positivesemi-de�nite (PSD), or else to have positive prin
ipal minors (PM).The results of Cottle were later generalized by Megiddo [3℄ whowent even further in [4℄ and examined the general nonlinear parametri

∗This resear
h was �nan
ially supported by the Resear
h Department of theTe
nol�ogi
o de Monterrey, Campus Monterrey, and by the SEP-CONACYT proje
tCB-2013-01-221676, Mexi
o. The se
ond author was also supported by the PAICYTproje
t No. CE250-09 and by the SEP-CONACYT proje
t CB-2009-01-127691.
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omplementarity problem (NPCP) in the form: Given a 
ontinuousmapping g : Rn+1
+ → Rn, solve a family {g(·; t) : t ≥ 0} of non-parametri
 CPs.Both Maier [1℄ and Cottle [2℄ 
laimed that the monotoni
ity propertyin linear parametri
 
omplementarity problems (LPCP) is often desiredin the 
ontext of elastoplasti
 stru
tures. Cottle also suggested thata generalization of his results �would �nd appli
ations in stru
turalme
hani
s as well as e
onomi
 equilibrium theory". All that was later
on�rmed in numerous papers (see, e.g., Kostreva [5℄, Ferris and Pang[6℄, to mention only few).In 
ontrast to the original problem's formulation by Maier, Cottle,and Megiddo, who tried to �nd not only su�
ient but also ne
essary
onditions of the monotoni
ity of the solutions of the 
orrespondingparametri
 
omplementarity problems with respe
t to the parameters,we are to 
onsider and examine a bit simpler task. Namely, we areinterested in �nding only su�
ient 
onditions of the latter monotoni
ity,and be
ause of that, we study a more general problem than thatexamined in [1�6℄.Now 
onsider a nonlinear 
omplementarity problem with parameters:Given a parameter ve
tor u = (u1, u2, ..., um) ∈ Rm, �nd a point x ∈ Rnsu
h that
x ≥ 0, Ax+Bu+ ϕ(x, u) ≥ 0, and

xT (Ax+Bu+ ϕ(x, u)) = 0; (2)here A,B are given n×n and n×m real matri
es, and ϕ : Rn×Rm → Rnis a nonlinear fun
tion.In order not to restri
t our resear
h to the 
ase of equal numbersof de
ision variables and parameters, we will use not the 
on
ept ofmonotoni
ity de�ned by the inner produ
t of the ve
tor-fun
tion andthe ve
tor of parameters, but the 
omponent-wise monotoni
ity notion(
f., e.g., [7℄) given below.De�nition 1. A mapping f : Rn →
Rm is 
alled monotone [antitone℄ if
x1 ≥ x2 implies f(x1) ≥ f(x2) [f(x1) ≤ f(x2)]. (We say that
a ≥ b if ai ≥ bi, i = 1, ..., n, i.e., the partial order relation in ve
torspa
es is involved).Now the following result 
an be established. The de�nition andimportant properties of M -matri
es 
an be found, e.g., in [8℄.Theorem 1. Let A be a positive de�nite M-matrix, B a non-positiveone, and ϕ(x, u) a di�erentiable fun
tion monotone by x and antitone
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t to u. Moreover, suppose ϕ′
x = ϕ′

x(x, u) to be a positivede�nite M-matrix for ea
h x and u. Then the solution x = x(u) toproblem (2) is monotone by u.The symmetri
al result 
on
erning the antitone behavior of solutionsof the 
omplementarity problem (2) is obtained readily by the theorembelow.Theorem 2. Let A be a positive de�nite M-matrix, B a non-negativeone, and ϕ(x, u) a di�erentiable fun
tion monotone by both x and u.Moreover, suppose ϕ′
x = ϕ′

x(x, u) to be a positive de�nite M-matrix forea
h x and u. Then the solution x = x(u) to problem (2) is antitone by
u. Extensions of the above-mentioned results to impli
it
omplementarity problems 
an be found in [9℄. The monotoni
ityof solutions to parametri
 variational inequalities, both in �nite- andin�nite-dimensional spa
es, will be the obje
t of the authors' futureresear
h. Referen
es1. Maier G. Problem 72-7*: A parametri
 linear 
omplementarityproblem // SIAM Review. 1972. V. 14, No. 2. P. 364�365. (12. Cottle R.W. Monotone solutions in parametri
 linear
omplementarity problems // Math. Programming. 1972. V. 3.No. 2. P. 210�224.3. Megiddo N. On monotoni
ity in parametri
 linear 
omplementarityproblems// Math. Programming. 1977. V. 12. No. 1. P. 60�66.4. Megiddo N. On the parametri
 nonlinear 
omplementarity problem// Math. Programming Study. 1978. V. 17. No. 1. P. 142�150.5. Kostreva M.M. Elasto-hydrodynami
 lubri
ation: A nonlinear
omplementarity problem // Int. J. Numer. Methods Fluids. 1984.V. 4. No. 3. P. 377�397.6. Ferris M.C., Pang J.-S. Engineering and e
onomi
 appli
ations of
omplementarity problems // SIAM Review. 1997. V. 39. No. 5.P. 669�713.7. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of NonlinearEquations in Several Variables. A
ademi
 Press, New York/London(1970).8. Berman A., Plemmons D. Nonnegative Matri
es in Mathemati
alS
ien
es. New York: A
ademi
 Press, 1979.9. Kalashnikov V.V., Kalashnykova N.I., and Castillo-P�erez F.J.Solutions of parametri
 
omplementarity problems monotone with
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t to parameters // Journal of Global Optimization. 2016.V. 64. No. 4. P. 703�719.Complexity estimates for one variant of thebran
h-and-bound algorithm for the subsetsum problem∗R.M. Kolpakov, M.A. Posypkin, and Si Thu Thant SinLomonosov MSU, Dorodni
yn Computing Centre, FRC CSC RAS,Mos
ow, RussiaThe subset sum problem is a parti
ular 
ase of the knapsa
k problem[1℄ stated as follows:




f(x) =
∑n

i=1 wixi → max,∑n
i=1 wixi ≤ C,

xi ∈ {0, 1}, i ∈ 1, n.

(1)Despite its simple formulation the problem is NP-hard. One of the moste�
ient methods for resolution of this problem is the Bran
h-and-Boundmethod with various elimination rules [1,2℄. Though it is well knownthat advan
ed Bran
h-and-Boundmethods 
an e�
iently 
ope with hardsubset sum instan
es the 
omplexity theory was not enough elaborated.We 
onsider the Bran
h-and-Bound method with the dominan
erelation used to eliminate sub-problems. Let P is a sub-problem of theproblem (1) obtained by �xing variables x1, . . . , xτ(P ), τ(P ) ∈ 0, n:




f(x) =
∑n

i=1 wixi → max,∑n
i=1 wixi ≤ C,

xi = θi(P ), i ∈ 1, τ(P )

xi ∈ {0, 1}, i ∈ τ(P ) + 1, n.

(2)Let us introdu
e the following designations
C(P ) = C −∑τ(P )

i=1 θi(P )wi,

k(P ) = {max k : k ∈ 0, n− τ(P ),
∑τ(P )+k

i=τ(P )+1 wi ≤ C(P )},
k(P ) = {max k : k ∈ 0, n− τ(P ),

∑n
i=n−k+1 wi ≤ C(P )},

∗This resear
h is supported by RFBR, proje
t 15-07-03102 and by Ministry ofS
ien
e and Edu
ation of Republi
 of Kazakhstan, proje
t 0115PK00554.



Optimization methods 43If w1 ≥ w2 ≥ · · · ≥ wn then obviously k(P ) ≤ k(P ). The sub-problem Pis said to ful�ll the 
ardinality elimination rule if k(P ) = k(P ). In this
ase the optimal solution of P is readily available:
x∗i (P ) =





θi(P ), if i ∈ 1, τ(P ),

1, if i ∈ τ(P ) + 1, τ + k(P ),

0, if i ∈ τ(P ) + k(P ) + 1, n.

(3)Therefore the sub-problem 
an be ex
luded from the further sear
h afterthe in
umbent solution is updated.We say that the sub-problem P1 is equivalent to the problem P2if τ(P1) = τ(P2) and C(P1) = C(P2). It is 
lear that equivalent sub-problems have the same obje
tive value of the optimal solution andtherefore only one equivalent sub-problems should be saved during thesear
h pro
ess (the other one is eliminated). The introdu
ed eliminationrule is a parti
ular 
ase of the more general dominan
e relation for theknapsa
k problem [1℄.After sorting the items in the non-in
reasing order, i.e. w1 ≥
w2 ≥ · · · ≥ wn, the algorithm follows the standard bran
h-and-bounds
heme. On ea
h iteration it takes a sub-problem from the list, applieselimination rules and if the sub-problem is not eliminated it splits thesub-problem into smaller sub-problems by �xing the next free (non-�xed)variable. The 
omplexity of the problem (1) is de�ned as the number ofsub-problems 
onsidered by the algorithm des
ribed above during theresolution pro
ess.The 
omplexity bound for this problem is given by the followingtheorem.Theorem. If n ≥ 3 the worst 
ase 
omplexity for the problem (1) is
2
(

n
⌊n

2 ⌋
)
− 1.It is worth to note that the worst 
ase 
omplexity is redu
edapproximately twi
e by applying the 
ardinality elimination ruleinstead of the standard elimination rule while using of the equivalen
eelimination rule does not a�e
t the upper bound.Referen
es1. Martello S., Toth P. Knapsa
k Problems. John Wiley & Sons Ltd.,1990.2. Kellerer H., Pfershy U., Pisinger D. Knapsa
k Problems. SpringerVerlag, 2004.



44 Optimization methodsSele
tive bi-
oordinate variations foroptimization problems with simplex
onstraints∗I.V. KonnovKazan Federal University, Kazan, RussiaWe 
onsider a spe
ial 
lass of optimization problems, where a goalfun
tion f is supposed to be smooth and a feasible set D is de�ned bysimplex 
onstraints. We write this problem as
min
x∈D

→ f(x), (1)where D =
{
x ∈ R

n
+ 〈e, x〉 = b

}, b is a �xed (non-negative) number, eis the ve
tor of units, Rn
+ denotes the non-negative orthant in R

n.It is well known that many problems of optimal allo
ation of someresour
e within a system redu
e to (1); see e.g. [1, 2℄. In parti
ular,they often arise in information and tele
ommuni
ation networks; see e.g.[3℄. Besides, similar optimization problems arise in ma
hine learning,signal, spee
h and image re
ognition and pro
essing, and related �elds;see e.g. [4, 5℄. These problems have huge dimensionality, their data maybe very inexa
t and in
omplete, but they do not require high a

ura
yof solutions. For this reason, we are interested in developing low 
ostiterative methods, whi
h keep the 
onvergen
e properties of the usualones, but redu
e the total 
omputational expenses. Due to the simplextype 
onstraints, the bi-
oordinate iterative methods may appear rathere�
ient here. The �rst bi-
oordinate method was proposed in [6℄. Thedetailed des
ription of its re
ent versions is given in [7℄.In this work, we develop a sele
tive bi-
oordinate method with spe
ialthreshold 
ontrol and toleran
es, whi
h follows the approa
h suggestedin [8℄. It should be noted that this method 
an be treated as a self-adjustment pro
ess for attaining an equilibrium state of a general 
losede
onomi
 system; see [8, 9℄.A point x̄ is 
alled a stationary point of (1) if
x̄ ∈ D, ∀i, j ∈ I = {1, . . . , n}, i 6= j, x̄i > 0 =⇒ gi(x̄) ≤ gj(x̄),where gi(x) = ∂f(x)

∂xi
. Ea
h solution of problem (1) is a stationary point,the reverse assertion is true if f is pseudo
onvex.

∗This resear
h is supported by the RFBR grant, proje
t No. 16-01-00109a.



Optimization methods 45We now des
ribe the iterative method for �nding stationary points.Let Iε(x) = {i ∈ I | xi ≥ ε}, Z+ denote the set of non-negative integers.Method (BCV). Initialization: Choose a point z0 ∈ D andsequen
es {δl} ց 0, {εl} ց 0. Set l = 1.Basi
 
y
le: Step 0: Set k = 0, x0 = zl−1.Step 1: Choose an index i ∈ Iεl(x
k) su
h that gi(xk) − gj(x

k) ≥ δl forsome j ∈ I, set dki = −1, dkj = 1, dks = 0 for other indi
es s 6= i, j, andgo to Step 2. Otherwise set zl = xk, l = l+1 and go to Step 0. (Restart)Step 2: Find m as the smallest number in Z+ su
h that
f(xk + θmxki d

k) ≤ f(xk) + βθmxki 〈f ′(xk), dk〉, (2)set λk = θmxki , xk+1 = xk + λkd
k, k = k + 1 and go to Step 1.The 
onvergen
e properties of the method are formulated as follows.Theorem 1. (a) For ea
h stage l, the number of 
hanges of index kin the basi
 
y
le is �nite;(b) the sequen
e {zl} has limit points and all these points are stationaryfor (1);(
) if f is pseudo
onvex, then liml→∞ f(zl) = f∗, and all the limit pointsof {zl} are solutions of (1).The above des
ent method admits various modi�
ations. Firstly, we
an take the exa
t one-dimensional minimization rule instead of the
urrent Armijo rule in (2). Se
ondly, if the fun
tion f is 
onvex, we
an repla
e (2) with the following:

〈f ′(xk + θmxki c), d
k〉 ≤ βθmxki 〈f ′(xk), dk〉,where only two sele
ted 
oordinates of dk are nonzero. Next, if thegradient of the fun
tion f possesses even partial Lips
hitz 
ontinuityproperties, we 
an simply take the �xed stepsize.Moreover, given a starting point z0 and a number α > 0, we 
anevaluate the 
omplexity of the method in this 
ase. It is de�ned asthe total number of iterations at l(α) stages su
h that l(α) is themaximal number l with f(zl) − f∗ ≥ α and denoted by N(α), where

f∗ = inf
x∈D

f(x). If the fun
tion f is 
onvex with Lips
hitz 
ontinuouspartial gradients, then the method attains the 
omplexity estimate
N(α) = O(1/α); see [10℄.



46 Optimization methodsIn 
omputational tests, (BCV) showed rather rapid 
onvergen
e in
omparison with the known methods su
h as the 
onditional gradientmethod and bi-
oordinate des
ent methods with random and marginalestimate rules for sele
tion of 
oordinate indi
es. In parti
ular, it redu
esthe total volume of 
omputational expenses in 
omparison with the
onditional gradient method sin
e it does not require 
al
ulations ofall the partial derivatives at ea
h iteration in general. At the sametime, (BCV) is suitable for parallel and distributed (multi-agent)
omputations.The method admits extensions to the more general 
lasses ofproblems, whi
h involve both lower and upper bounds for variables,besides, the equality 
onstraint 〈e, x〉 = b 
an be repla
ed by 〈a, x〉 = b,where a is an arbitrary ve
tor in R
n and b is an arbitrary number.Referen
es1. Konnov I.V. Equilibrium Models and Variational Inequalities.Amsterdam: Elsevier, 2007.2. Patriksson M. A survey on the 
ontinuous nonlinear resour
eallo
ation problem // Eur. J. Oper. Res. 2008. V. 185, � 1. P. 1�46.3. Sta�n
zak S., Wi
zanowski M., Bo
he H. Resour
e Allo
ation inWireless Networks. Theory and Algorithms. Berlin: Springer, 2006.4. Burges C.J.C. A tutorial on support ve
tor ma
hines for patternre
ognition// Data Mining Know. Dis
. 1998. V. 2, �2. P.121�167.5. Cevher V., Be
ker S., S
hmidt M. Convex optimization for big data// Signal Pro
ess. Magaz. 2014. V.31, �5. P.32�43.6. Korpelevi
h G.M. Coordinate des
ent method for minimizationproblems with linear inequality 
onstraints and matrix games//Mathemati
al Methods for Solving E
onomi
 Problems. V. 9.Mos
ow: Nauka, 1980. P. 84�97.7. Be
k A. The 2-
oordinate des
ent method for solving double-sidedsimplex 
onstrained minimization problems // J. Optim. Theory.Appl. 2014. V. 162, �3. P.892�919.8. Konnov I.V. Sele
tive bi-
oordinate variations for resour
e allo
ati-on type problems// Comp. Optim. Appl. DOI 10.1007/s10589-016-9824-29. Konnov I.V. An alternative e
onomi
 equilibrium model with di�e-rent implementation me
hanisms// Adv. Model. Optim. 2015.V.17, �2. P.245�265.



Optimization methods 4710. Konnov I.V. A method of bi-
oordinate variations with toleran
esand its 
onvergen
e// Russ. Mathem. (Iz. VUZ). 2016. V. 60, �1.P.68�72.Normative dynami
 analysis of aheterogeneous 
omputing systemYu.E. Mala
henko and I.A. NazarovaDorodni
yn Computing Centre, Federal Resear
h Center �ComputerS
ien
e and Control� of Russian A
ademy of S
ien
es, Mos
ow, RussiaConsider the heterogeneous 
omputer systems (CS) that pro
essesa �ow of various 
omputationally intensive tasks under un
ertainty(CITUs). To improve performan
e, a CS has spe
ialized units that
onsiderably speed-up of some pro
edures by 
ompare with a general-purpose pro
essor. Di�erent types of units 
ompleted the same task ina di�erent amount of time; moreover, some 
an exe
ute only spe
i�
types of algorithms and are appli
able to a limited 
lass of tasks. Touse the CS resour
es more e�
iently and satisfy the prin
iple of equalsigni�
an
e of tasks when the CITUs are s
heduled, optimization modelsand approa
hes are used (see [1-3℄) that form a hardware and softwareenvironment. In this report, we study the operation of a heterogeneous
omputer system from the viewpoint of its performan
e. Typi
ally,performan
e is de�ned as the amount of 
omputational work performedin a unit of time or during a time interval.The number and performan
e of pro
essing units in a heterogeneousCS may 
hange with time; moreover, new versions of software and
ontrol subsystems 
an drasti
ally 
hange the amount and the wholeset of works. Hen
e, it is the problem of analysis of the CS fun
tional
apabilities dynami
s under the 
onditions of 
hanges in the workabilityof elements due to failures.In this report make use a multiparameter model (MP model) toanalyze the dynami
s of a CS performan
e based on deriving guaranteedbounds on the amount of work that 
an be a

omplished provided thatthe resour
es are allo
ated e�
iently. The input task �ow is intensive,and the CS 
an 
omplete only a part of these tasks. As the 
hara
teristi
of the CS fun
tional 
apabilities make use of the ve
tor of simultaneouslyexe
uted tasks. The 
omponents of this ve
tor 
orrespond to the amountof 
omputational work that 
an be jointly 
ompleted in one operationalwindow. Ea
h feasible allo
ation of available resour
es is assigned ave
tor 
onsisting of the set of exe
uted tasks, and the points at the



48 Optimization methodsboundary of this set determine the extreme fun
tional 
apabilities of theCS. To investigate these boundaries and ve
tors, single-task operationalmodes are 
onsidered in whi
h the system pro
esses only a single typeof tasks.The maximum fun
tional 
apabilities of the CS are determined bysolving the following multiple 
riteria optimization problem: maximizethe ve
tor of exe
uted tasks on the set of feasible resour
e allo
ations.The values of the maximum amount of work that 
an be done in thesingle-task mode of task pro
essing are used as weighting 
oe�
ients inthe multiple 
riteria optimization of resour
e allo
ation. The maximumfun
tional 
apabilities are des
ribed by a subset of Pareto optimal ve
torsof exe
uted tasks (none of the 
omponents of su
h a ve
tor 
an bein
reased without de
reasing another 
omponent).For a fully operational CS working at its maximum performan
e,the 
on
ept of the initial normal state is introdu
ed. The normativefun
tional 
hara
teristi
s are determined by the Pareto optimal solutionto the problem for the initial normal state of the system, whi
h isdetermined by the weighting 
oe�
ients obtained for the single-taskoperational modes of the system.To �nd a dynami
 estimate of the CS state in the beginning of ea
hoperational window taking into a

ount the a
tual state of resour
es, the
urrent limiting fun
tional 
hara
teristi
s are 
omputed.At 
ertain 
he
k time point, the 
urrent maximum values of theperforman
e indi
ators are 
ompared with the normative ones. A two-dimensional diagram of relative deviations is 
onstru
ted, whi
h makesit possible to tra
k the dynami
s of performan
e indi
ator 
hanges.The 
onstru
ted 
harts illustrate variations in the limiting fun
tional
hara
teristi
s when the te
hni
al 
hara
teristi
s of the system elementsvary. The analysis of the 
harts obtained over a long time period makes itpossible to reliably estimate the fun
tional 
apabilities of the system invarious operational states (hardware failures) when the system pro
essestasks of di�erent types. Referen
es1. Yu.E. Malashenko and I. A. Nazarova. Control of resour
e intensive
omputations under un
ertainty. I. Multiparametri
 model // J.Comput. Syst. S
i. Int. 2014. V. 53, � 4. P. 497�510.2. I. K. Kupalov-Yaropolk, Yu. E. Malashenko, I. A. Nazarova, andA. F. Ronzhin. Control of resour
e intensive 
omputations underun
ertainty. II. S
heduling 
omplex // J. Comput. Syst. S
i. Int.



Optimization methods 492014. V. 53, � 5. P. 636�644.3. Yu. E. Malashenko and I. A. Nazarova. Control of resour
eintensive 
omputations under un
ertainty. III. Dynami
 
on
urrentresour
e allo
ation // Comput. Syst. S
i. Int. 2015. V. 54, � 1.P. 48�58.On methods for solving quasi variationalinequalitiesM. Ja�
imovi�
 and N. Mijajlovi�
University of Montenegro, Podgori
a, Montenegro1. Introdu
tion. Consider the following quasi variational inequality:�nd x∗ ∈ C(x∗) su
h that
〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ C(x∗), (1)where C : H → 2H is set-valued mapping with nonempty 
onvex and
losed set C(x) ⊆ H for all x from Hilbert spa
e H.Note that the di�
ulty of problems with quasi variational inequalitiesis related to the fa
t that one must simultaneously solve a variationalinequality and 
al
ulate a �xed point of a set-valued mapping. Thisexplains why the literature on solution methods for quasi variationalinequalities is not too extensive. Consequently, there are numerous openquestions.We will suppose that the operator F satis�es the Lips
hitz 
onditionwith the positive 
onstant L and strong monotoni
ity with positive
onstant µ.The theorems about existen
e of solutions show a notable di�eren
ebetween variational and quasi variational inequalities. For example, if Fis strongly monotone and Lips
hitz 
ontinuous on 
losed and 
onvex set,then variational inequality has a unique solution. On the other hand,for quasi variational inequalities it is ne
essary to add a 
ondition (see[1,2℄):

‖ΠC(x)[z]−ΠC(y)[z]‖ ≤ λ‖x− y‖, ∀x, y, z ∈ H, λ <
µ

L
, (2)where ΠC [z] is the proje
tion of point z onto the set C.In many important appli
ations the 
onvex valued set C(x) 
an bewritten as C(x) = c(x) + C0, where C0 is a 
losed 
onvex set and c :

H → H is a Lips
hitz 
ontinuous mapping with 
onstant λ > 0. In this
ase, assumption (2) holds with the same value of λ (see [2℄).



50 Optimization methodsExample 1. Mapping F (x) = x, x ∈ R is strongly monotone andLipshitz 
ontinuous with 
onstants µ = L = 1. Then, for C(x) = {x}, or
C(x) = [x, x+ 1] quasi variational inequality: �nd x∗ ∈ C(x∗) su
h that
〈F (x∗), y−x∗〉 ≥ 0 ∀y ∈ C(x∗), has in�nitely many solutions (the set ofsolutions is R). If C(x) = [x− 1, x] the set of solutions of this inequalityis empty.Example 2. If

C(x) =





[1/2, 1], if x ∈ [0, 1/2)
[0, 1] , if x = 1/2
[0, 1/2] , if x ∈ (1/2, 1]mapping C has a unique �xed point x∗ = 1/2, but it is not a solution of(1).2. Continuous methods. We will 
onsider the di�erential equation

x′(t) + x(t) = ΠC(x(t))[x(t)− α(t)F (x(t)], t ≥ 0, x(0) = x0, (3)where x0 is a given initial point in H and α > 0 is a parameter ofthe method. Then, solution x∗ of quasi variational inequality (1) is astationary point of system (3).Theorem 1. Let operator F : H → H be strongly monotone (with
onstant µ > 0) and Lipshitz 
ontinuous (with 
onstant L > 0), set-valued mapping C : H → 2H with nonempty, 
losed and 
onvex values
C(x) ⊆ H ∀x ∈ H satis�es 
ondition (2) and parameter α(t) ∈
C([0,+∞) satis�es the following 
onditions: 0 < α0 ≤ α(t) ≤ α1, ∀t ≥
0, where α0 >

µ−
√

µ2−L2(2λ−λ2)

L2 , α1 <
µ+

√
µ2−L2(2λ−λ2)

L2 . Then, for all
x0 ∈ H, the traje
tory x(t), t ≥ 0 de�ned by (3) 
onverges to the uniquesolution x∗ ∈ C(x∗) of problem (1) with the following rate:

‖x(t)− x∗‖ ≤ e−a0t/2‖x0 − x∗‖,where a0 = 1−
(
λ+

√
1− 2α1µ+ α2

0L
2

)2

.Continuous proximal method for quasi variational inequalities was
onsidered in [5℄.3. Iterative methods. Some iterative versions of the gradientproje
tion method for 
onvex minimization, variational and quasivariational inequalities were investigated in [2,3℄. Here, we des
ribe



Optimization methods 51iterative proximal method, whi
h 
an be understood as an impli
itvariant of the gradient proje
tion method. Let x0 ∈ C0 be an arbitraryinitial approximation of the solution. Suppose that, for a 
ertain k > 0,the approximation xk ∈ C(xk−1) has already been determined. Then theset C(xk) is de�ned. The approximation xk+1 ∈ C(xk) is determined asa solution to the following variational inequality: �nd xk+1 for whi
h
〈xk+1 − xk + αF (xk+1), z − xk+1 + c(xk)〉 ≥ 0, ∀z ∈ C0. (4)where α > 0. Note that this inequality is uniquely solvable. Method isdes
ribed. In the theorem below, we state 
onditions for the 
onvergen
eof this method and estimate the 
onvergen
e rate.Theorem 2. Let the following assumptions be ful�lled:(1) C0 ⊆ H is a 
onvex 
losed subset of the Hilbert spa
e H, c : H →

H is a Lips
hitz 
ontinuous operator with the 
onstant l > 0 and C :
H → 2H is a set-valued mapping of the form C(x) = c(x) + C0, x ∈ H;(2) The operator F : H → H is strongly monotone with the 
onstant
µ > 0 and Lipshitz 
ontinuous with the 
onstant L > 0;(3) The parameter α and the 
onstants l, L, and µ satisfy the 
ondi-tions l < √

2
2

µ
L ,

∣∣α− µ
L2

∣∣ < 1
L2

√
µ2 − 2l2L2. Then, for every initialapproximation x0 ∈ C0, the sequen
e {xk} de�ned by (4) 
onverges tothe unique solution x∗ ∈ C(x∗) of problem (1). Moreover, the followingestimate for the 
onvergen
e rate is valid:

‖xk+1 − x∗‖ ≤ qk(α)‖x0 − x∗‖, where q(α) =√ 1 + 2l2

1 + 2αµ− α2L2
.Referen
es1. Noor M. A., Oettli W., On general nonlinear 
omplementarityproblems and quasi equilibria. Le Mathemati
he XLIX, 1994., p.313-331,2. Nesterov Yu., S
rimali L., Solving strongly monotone variationaland quasi-variational inequalities, Core dis
ussion paper,2006/107,3. Vasiliev F. P., Methods of Optimization, Mos
ow, MCCME, (2011)(in Russian)4. Ja�
imovi�
 M., Mijajlovi�
 N., On a Continuous Gradient-type Met-hod for Solving Quasi-variational Inequalities. Pro
eedings of theMontenegrin A
ademy of S
ien
es and Arts, Vol. 19, (2010)
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, N., Ja�
imovi�
, M.: Proximal methods for solving quasi-variational inequalities, Computational Mathemati
s and Mathe-mati
al Physi
s, Vol. 55, No. 12, pp. 1981�1985, (2015)Optimization methods and software forseeking a Nash equilibrium in hexamatrixgames∗A.V. Orlov and A.S. StrekalovskyMatrosov Institute for System Dynami
s and Control Theory of SBRAS, Irkutsk, RussiaConsider the following polymatrix game of three players (hexamatrixgame) with mixed strategies:
F1(x, y, z) , 〈x,A1y +A2z〉 ↑ max

x
, x ∈ Sm,

F2(x, y, z) , 〈y,B1x+B2z〉 ↑ max
y
, y ∈ Sn,

F3(x, y, z) , 〈z, C1x+ C2y〉 ↑ max
z
, z ∈ Sl,



where Sp = {(u1, . . . , up)T ∈ IRp

∣∣ ui ≥ 0,
p∑

i=1

ui = 1}, p = m,n, l.Further 
onsider the following non
onvex optimization problem(σ , (x, y, z, α, β, γ)):
Φ(σ) , 〈x,A1y +A2z〉+ 〈y,B1x+B2z〉+ 〈z, C1x+ C2y〉−
−α− β − γ ↑ max

σ
, σ ∈ D , {(x, y, z, α, β, γ) ∈ IRm+n+l+3 |

| x ∈ Sm, y ∈ Sn, z ∈ Sl, A1y +A2z ≤ αem,
B1x+ B2z ≤ βen, C1x+ C2y ≤ γel},





(P)where ep = (1, 1, ..., 1) ∈ IRp, p = m,n, l.The sear
h for a global solution to Problem (P) is equivalent to a�nding Nash equilibria in hexamatrix game [1℄ 
onstru
ted with matri
es
A = (A1, A2), B = (B1, B2), and C = (C1, C2).Theorem. [1℄ A point (x∗, y∗, z∗) is a Nash equilibrium point inthe hexamatrix game Γ(A,B,C) if and only if it is a part of a globalsolution σ∗ , (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ IRm+n+l+3 of Problem (P). Atthe same time, the numbers α∗, β∗, and γ∗ are the payo�s of the �rst,the se
ond, and the third players, respe
tively, in the game Γ(A,B,C):

∗This resear
h is supported by the Russian S
ien
e Foundation (proje
tNo. 15-11-20015).
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α∗ = v1(x

∗, y∗, z∗), β∗ = v2(x
∗, y∗, z∗), γ∗ = v3(x

∗, y∗, z∗). Inaddition, an optimal value V(P) of Problem (P) is equal to zero:
V(P) = Φ(σ∗) = 0.In order to solve Problem (P), we are using an approa
h based onGlobal Sear
h Theory [2℄. A

ording to this theory the Global Sear
h
onsists of two prin
ipal stages: 1) a lo
al sear
h, whi
h takes intoa

ount the stru
ture of the problem under s
rutiny; 2) the pro
eduresbased on Global Optimality Conditions (GOC) [2℄, whi
h allow toimprove the point provided by the lo
al sear
h method, in other words,to es
ape a lo
al pit.To implement a lo
al sear
h in Problem (P), we are applying theideas, �rst, of splitting variables in several groups, and, after that, of
onse
utive solving of spe
ially 
onstru
ted LP problems with respe
tto the groups of variables. These ideas have previously demonstrated itse�
ien
y in bimatrix games [3℄, bilinear programming problems [3℄, andbilevel problems [4℄.In order to do it, 
onsider the following LP problems:

f1(x, β) , 〈x, (A1 +BT
1 )v + (A2 + CT

1 )w〉 − β ↑ max
(x,β)

,

(x, β) ∈ X(v, w, γ̄) , {(x, β) | x ∈ Sm,
B1x− βen ≤ −B2w, C1x ≤ γ̄el − C2v};





(LPx(v, w, γ̄))

f2(y, γ) , 〈y, (B1 +AT
1 )u+ (B2 + CT

2 )w〉 − γ ↑ max
(y,γ)

,

(y, γ) ∈ Y (u,w, ᾱ) , {(y, γ) | y ∈ Sn,
A1y ≤ ᾱem −A2w, C2y − γel ≤ −C1u};





(LPy(u,w, ᾱ))

f3(z, α) , 〈z, (C1 +AT
2 )u+ (C2 +BT

2 )v〉 − α ↑ max
(z,α)

,

(z, α) ∈ Z(u, v, β̄) , {(z, α) | z ∈ Sl,
A2z − αem ≤ −A1v, B2z ≤ β̄en −B1u}.





(LPz(u, v, β̄))Here (u, v, w, ᾱ, β̄, γ̄) ∈ D is a feasible point in Problem (P).The lo
al sear
h method based on a 
onse
utive solving of theseLPs 
onverges to the point σ̂ , (x̂, ŷ, ẑ, α̂, β̂, γ̂), whi
h is satisfying thefollowing inequalities:
Φ(σ̂) ≥ Φ(x, ŷ, ẑ, α̂, β, γ̂) ∀(x, β) ∈ X(ŷ, ẑ, γ̂),

Φ(σ̂) ≥ Φ(x̂, y, ẑ, α̂, β̂, γ) ∀(y, γ) ∈ Y (x̂, ẑ, α̂),
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Φ(σ̂) ≥ Φ(x̂, ŷ, z, α, β̂, γ̂) ∀(z, α) ∈ Z(x̂, ŷ, β̂).Su
h a point point 
an be 
alled a partially global solution of theproblem (P) (with respe
t to pairs (x, β), (y, γ), and (z, α)).For a global sear
h pro
edure, �rst, we need to 
onstru
t the expli
itrepresentation of the obje
tive fun
tion Φ as a di�eren
e of two 
onvexfun
tions, for example, as follows:
Φ(x, y, z, α, β, γ) = h(x, y, z)− g(x, y, z, α, β, γ),

h(x, y, z) =
1

4

(
‖x+A1y‖2 + ‖x+A2z‖2 + ‖B1x+ y‖2 + ‖y +B2z‖2+

+‖C1x+ z‖2 + ‖C2y + z‖2
)
, g(σ) =

1

4

(
‖x−A1y‖2 + ‖x−A2z‖2+

+‖B1x− y‖2 + ‖y −B2z‖2 + ‖C1x− z‖2 + ‖C2y − z‖2
)
+ α+ β + γ.Therefore, the global sear
h method in Problem (P) is based onGOC for d.
. maximization problems (see [2-4℄). A

ording to [2-4℄, theglobal sear
h pro
edure 
onsists of several stages su
h as 
onstru
ting anapproximation of the level surfa
e of the 
onvex fun
tion h(x, y, z), whi
hgenerates a basi
 non
onvexity of the problem (P), solving the linearized
onvex problem, an implementing of additional lo
al sear
h, verifyingGOC et
. As a result, taking into a

ount the features of Problem (P)and using all the stages of the global sear
h above mentioned, we have
onstru
ted and implemented the Global Sear
h Algorithm in the hexa-matrix games.The software, implementing elaborated methods of lo
al and globalsear
h has been developed in MATLAB 7.11.0.584 R2010b. As for auxi-liary LP problems and 
onvex quadrati
 problems, they have been solvedby 
orresponding MATLAB subroutines of famous software pa
kage IBMCPLEX (v. 12.62). This pa
kage shows the 
onsiderable advantages withrespe
t to standard MATLAB subroutines "linprog" and "quadprog".The e�
ien
y of 
reated software is demonstrated by the results of
omputational solving of the large amount of test hexamatrix games.Referen
es1. Strekalovsky A.S., Enkhbat R. Polymatrix games and optimizationproblems // Automation and Remote Control. 2014. V. 75, No. 4,P. 632�645.2. Strekalovsky A.S. Elements of non
onvex optimization.Novosibirsk: Nauka, 2003 (in Russian).



Optimization methods 553. Strekalovsky A.S., Orlov A.V. Bimatrix games and bilinear prog-ramming. Mos
ow: FizMatLit, 2007 (in Russian).4. Strekalovsky A.S., Orlov A.V., Malyshev A.V. On 
omputationalsear
h for optimisti
 solutions in bilevel problems // Journal ofGlobal Optimization. 2010. V. 48, No. 1, P. 159�172.Stability of a model predi
tive impulsive
ontrol s
heme∗F.L. PereiraSYSTEC, Fa
ulty of Engineering, Porto University, Porto, PortugalThis arti
le 
on
erns the stability of an optimal 
ontrol basedre
eding horizon s
heme - often referred to by Model Predi
tiveControl (MPC) - for dynami
 impulsive 
ontrol systems. An optimizingframework for state feedba
k 
ontrol of the dynami
 system emergesfrom the arti
ulation of a dis
rete-time state sampling strategy with the
ontrol synthesis via optimality 
onditions, notably, ne
essary 
onditionsof optimality in the form of a Maximum Prin
iple (see [1,2℄, and,then, appropriately sliding the time horizon. Unlike [3℄, this is apra
ti
al approa
h that 
ombines optimality 
onditions with state-variable sampling in order to take into a

ount perturbations thata�e
t the behavior of real-world systems, while mitigating the huge
omputational burden typi
ally asso
iated with the on-line 
omputationof optimal feedba
k 
ontrol, whi
h, in general, requires solving a 
ertainHamilton-Ja
obi-Bellman partial di�erential equation, [4℄. There is notonly an abundant body of literature on MPC s
hemes for 
onventional
ontrol - systems with absolutely 
ontinuous traje
tories and referen
estherein, but also, it has been widely used by the 
ontrol pra
titioners fora signi�
ant period of time now, [5℄.This state-of-a�airs strongly 
ontrasts with the one for impulsive
ontrol systems, that is, dynami
 systems whose 
ontrol spa
e is enlargedto 
ontain measures and, thus, the asso
iated traje
tories are merely ofbounded variation, and, in parti
ular, may have jumps. In parti
ular, we
onsider systems of the form
dx = f(t, x, u)dt+G(t, x, u)dϑwith (x(0), x(T )) ∈ C0 × CT , u ∈ U , and ϑ ∈ I, where f : [0, T ]× R

n ×
R

m → R
n, and G : [0, T ]×R

n×R
m → R

n×k are given mappings, C0 and
∗This resear
h is supported by FCT grant SYSTEC R&D Unit ref.UID/EEA/00147/2013.
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CT are 
ompa
t sets, U = {u ∈ L∞([0, T ];Rm) : u(t) ∈ Ω}, with 
ompa
t
Ω ⊂ R

m, I is the impulsive 
ontrol 
onstraint set, and ϑ = (µ, {uτ , vτ})is the impulsive 
ontrol whi
h is spe
i�ed by two 
omponents: a Borelmeasure µ ∈ K with range in 
onvex, 
losed and pointed 
one K in R
k,and a 
ertain pair of fun
tions {uτ , vτ} de�ned on the support of theatomi
 
omponent of µ. For details, see [6,7℄.Intuitively, the need to adopt an impulsive 
ontrol framework ariseswhen the 
ontrol systems exhibits very fast and very slow dynami
sabstra
tion and the optimal 
ontrol problem of interest is su
h thatthese two 
omponents of the dynami
s 
an not be dealt with separately.There are several 
on
epts of impulsive 
ontrol and impulsive traje
toriesin the literature. We 
onsider the ones de�ned in [6℄ whi
h, arguably, areamong the most sophisti
ated ones in that it is well suited to 
apturethe requirements of important 
lasses of engineering systems, [7℄.The MPC s
heme for the this 
lass of impulsive 
ontrol systemsproposed here is a re�nement of the one des
ribed in Chapter 9 (AnOptimization-based Framework for Impulsive Control Systems) in [5℄and it enables the 
onstru
tion of a state feedba
k 
ontrol law by jointly
omputing sequen
es of

• sampling instants π := {ti}i≥0 in [0,+∞) with inter-samplingtimes δi > 0 su
h that ti+1 = ti + δi for all i ≥ 0,
• open loop optimal 
ontrols on [ti, ti + T ] by solving the optimal
ontrol problems P(ti, xi, T ) at ea
h sampling instant ti ∈ π byusing the 
urrent measure of the state variable x(ti) = xi,where

P(ti, xi, T ) Minimize W (ti + T, x(ti + T )) +

∫ ti+T

ti

Lac(s, x(s), u(s))ds

+

∫

[ti,ti+T ]

Ls(s, x(s), u(s))dϑ(s)subje
t to dx(t) = f(t, x(t), u(t))dt+G(t, x(t), u(t))dϑ(t)

∀t ∈ [ti, ti + T ],

u ∈ U|[ti,ti+T ], ϑ ∈ I|[ti,ti+T ], x(ti + T ) ∈ S,The proposed MPC s
heme involves a form of re
eding horizon thattakes into a

ount the spe
i�
ities of the impulsive 
ontrol, is a follows:1. Initialization. Set parameters, spe
ify initial data, and iteration
ounter i = 0.2. Sample the 
urrent state of the plant x(ti) = xi.



Optimization methods 573. Solve problem P(ti, xi, T ) to obtain the open-loop optimal
onventional 
ontrol ūi ∈ U|[ti,ti+T ] and impulsive 
ontrol ϑ̄i ∈
I|[ti,ti+T ]. Whenever µ̄i({t}) 6= 0 (i.e., if the optimal 
ontrolmeasure has an atom, in
luding the time endpoints ti and ti + T ),then, the optimal ar
 joining the asso
iated traje
tory endpointshas to be de�ned by 
omputing the optimal pair of fun
tions
(ūit(·), v̄it(·)) de�ned on the asso
iated emerging interval [t, t +
|µ̄i({t})|].4. Determination of the next sampling instant. This is the earliesttime in whi
h either a time interval of duration δ elapses, or anatom of µ̄i o

urs. We remark that the 
ase of τ = 0 makes sensewhen the perturbations a�e
ting the system are extremely fast andan abstra
t �set-valued sampling rate� is 
onsidered.5. Apply to the plant the 
ontrol pair ūi and ϑ̄i during the interval
[ti, ti+δi], being the 
ontrol strategy values 
omputed for t ≥ ti+δidis
arded.6. Now the optimization time horizon slides, i.e., we 
onsider ti+1 =
ti + δi, we let i = i+ 1 and repeat the pro
edure from step 2.Here, the 
losed set S ⊂ R

n, and the mappingsW : [ti, ti+T ]×R
n →

R, Lac : [ti, ti+T ]×R
n×R

m → R and Ls : [ti, ti+T ]×R
n×R

m → R
k are
hosen in order to ensure the stability of the MPC s
heme. Under mildassumption on the data of the impulsive 
ontrol system, a Lyapunov likeasymptoti
 stability of this MPC s
heme are proved in the 
ontext ofnonsmooth 
ontext, [2,8℄, and by making use of auxiliary extension ofinvarian
e results, [2℄, for impulsive systems.Referen
es1. Arutyunov A. V. Optimality Conditions: Abnormal andDegenerate Problems. Kluwer A
ademi
 Publishers, 2000.2. Vinter R. B. Optimal Control. Birkhauser Boston, 2000.3. Pereira F., Silva G. N. Lyapunov stability of measure drivenimpulsive systems // Di�erential Equations. 2004. V. 40. P. 1122�11304. Fraga S. L., Pereira F. Hamilton-Ja
obi-Bellman Equation andFeedba
k Synthesis for Impulsive Control // IEEE Trans. onAutom. Control. 2012. V. 57. P. 244�2495. Olaru S., A. Gran
harova A., Pereira F. (ed.). Developments inModel-Based Optimization and Control Distributed Control andIndustrial Appli
ations. Le
t Notes in Control and Inf. S
i. 464,Springer, 2016.



58 Optimization methods6. Arutyunov A. V., Karamzin D. Y., Pereira F. Pontryagin'smaximum prin
iple for 
onstrained impulsive 
ontrol problem //Nonlin. Anal.-Theory, Method & Appl. 2012. V. 75. P. 1045�10577. Arutyunov A. V., Karamzin D. Y., Pereira F. Impulsive ControlProblems with State Constraints: R.V. Gamkrelidze Approa
h tothe Ne
essary Optimality Conditions // J. of Optim Theory &Appl. 2014. V. 166. N. 2. P. 440�4598. Mordukhovi
h B. S. Variational Analysis and GeneralizedDi�erentiation, I: Basi
 Theory, II: Appli
ations. Springer, Berlin,2006.On smooth approximation of 
onvex sets and
onvex fun
tions∗L.N. PolyakovaSaint Petersburg State University, Saint Petersburg, Russia1. Smooth approximations of 
onvex sets.Let a set X ⊂ R
n be 
losed and 
onvex and x ∈ X . A 
losed 
onvexset is 
alled smooth if at ea
h of its boundary point there exists a uniquesupport hyperplane.A set

N(X, x) =
{
g ∈ R

n
∣∣ 〈g, z − x〉 6 0 ∀z ∈ X

}is 
alled the normal 
one to X at a point x ∈ X [1℄. N(X, x) is 
losedand 
onvex.Thus if the normal 
one at ea
h boundary point x ∈ X 
onsists of asingle ray then the set X is smooth.Let X ⊂ R
n be 
losed and 
onvex set and do not 
oin
ide with R

n.Consider the 
losed 
onvex set
Zε = X + εB1(0n), ε > 0,where

Br(x0) = {x ∈ R
n | ||x− x0|| 6 r}.Hereinafter, ||x|| = √〈x, x〉 is the Eu
lidean norm. Note that Zε is theset with nonempty interior under every positive ε.

∗This resear
h is supported by the Saint Petersburg State University grant9.38.205.2014.



Optimization methods 59Theorem 1.The normal 
one to Zε at every boundary point z0 ∈bd (Zε) 
onsists of a single ray.2. Smooth approximations of 
onvex fun
tions.Let f1, f2 : Rn → R ∪ {+∞} be 
onvex fun
tions.A fun
tion
f(x) = inf

x1 + x2 = x
x1, x2 ∈ R

n

{f1(x1) + f2(x2)} = inf
x1∈Rn

{f1(x1) + f2(x− x1)}is 
alled in�mal 
onvolution of two fun
tions f1 and f2 and is denotedby
f(x) = (f1 ⊕ f2)(x).The fun
tion f is 
onvex. The operation of taking the in�mal 
onvolutionof two 
onvex fun
tions is 
ommutative and asso
iative.Fix ε > 0. De�ne a fun
tion

tε(x) =

{
−
√
ε2 − 〈x, x〉, ||x|| 6 ε,
+∞, ||x|| > ε,

x ∈ R
n.Note that

t∗ε(v) = ε
√
1 + 〈v, v〉, v ∈ R

n,where t∗ε is the 
onjugate fun
tion of tε.Let f : Rn → R be a 
onvex fun
tion and D ⊂ R
n be 
losed 
onvexset. Denote

X =
{
[x, µ] ∈ R

n × R
∣∣ µ ≥ f(x), x ∈ D

}
.Constru
t families of smooth 
losed 
onvex sets {Zε}, {Dε},

Zε = X + εB1(0n+1) ⊂ R
n+1, ε > 0,

Dε = D + εB1(0n) ⊂ R
n,and a family of 
onvex fun
tions {fε},

fε(x) =

{
inf µ, [x, µ] ∈ Zε

+∞, â îñòàëüíûõ ñëó÷àÿõ.It is not di�
ult to note that dom fε = Dε and for every �xed ε > 0 thegraph of fε is a lower envelope of the set Xε.



60 Optimization methodsFix ε > 0. Let z ∈ D. Consider a family of 
onvex fun
tions {ϕε(x, z)}

ϕε(x, z) = f(z) + tε(x, z),where
tε(x, z) =

{
−
√
ε2 − ||x− z||2, x ∈ aε(z),

+∞, in other 
ases.Here
aε(z) = {x ∈ R

n
∣∣ ||x− z|| 6 ε } ⊂ Dε.It's obvious thatdom ϕε(·, z) = aε(z),

⋃

z∈D

aε(z) = Dε.Denote Hε(z) = epi ϕε(·, z). Consider also fun
tions
ϕε(x) = inf

z∈D
ϕε(x, z)and their epigraphs Hε = epi ϕε.Theorem 2. The following relations1. fε(x) = (f ⊕ tε)(x) = ϕε(x),2. dom fε = dom f1 +Bε(0n), epi fε = epi f1 +Bε(0n+1),where

Bε(0n) = {x ∈ R
n | ||x|| 6 ε}, Bε(0n+1) = {x ∈ R

n+1 | ||x|| 6 ε},hold.Theorem 3. The fun
tion fε is 
ontinuously di�erentiable at everyinterior point of the set Dε for ea
h �xed ε > 0.Theorem 4. The set epi fε is smooth for ea
h �xed ε > 0.Denote by M a set of minimizers of the fun
tion f on the set D, anddenote by Mε a set of minimizers of the fun
tion fε on the set Dε. The
ase in whi
h these sets are empty is not ex
luded.Theorem 5.1. The equality M =Mε holds.2. If M is a nonempty then
fε(z

∗) = f(z∗)− ε ∀z∗ ∈M.
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es1. Ro
kafellar R.T. Convex Analysis. Prin
eton. New York: Prin
etonUniv. Press. 1970.2. Lei
htweiss K. Konvexe Mengen. Berlin. 1980.A two-step proximal algorithm of solving theproblem of equilibrium programmingV.V. SemenovKiev National Taras Shev
henko University, Kiev, UkraineLet C be a nonempty 
losed 
onvex subset of a real Hilbert spa
e Hand F : C × C → R be a bifun
tion with F (x, x) = 0 for all x ∈ C.Consider the following equilibrium problem in the sense of Blum andOettli [1, 2℄: �nd x ∈ C su
h that F (x, y) ≥ 0 ∀ y ∈ C.We propose a new iterative two-step proximal algorithm for solvingthe problem of equilibrium programming in a Hilbert spa
e. This methodis a result of extension of L. D. Popov's modi�
ation of Arrow-Hurwi
zs
heme for approximation of saddle points of 
onvex-
on
ave fun
tions[3, 4℄. More pre
isely, we propose and analyse the following algorithm:for x1, y1 ∈ C generate the sequen
es xn, yn ∈ C with the iteratives
heme
{
xn+1 ∈ proxλF (yn,·)xn = argminy∈C

{
λF (yn, y) +

1
2‖y − xn‖2

}
,

yn+1 ∈ proxλF (yn,·)xn+1 = argminy∈C

{
λF (yn, y) +

1
2‖y − xn+1‖2

}
,where λ > 0.The 
onvergen
e of the algorithm is proved under the assumptionthat the solution exists and the bifun
tion is pseudo-monotone andLips
hitz-type. Referen
es1. Blum E., Oettli W. From optimization and variational inequalitiesto equilibrium problems // Math. Stud. 1994. V. 63. P. 123�145.2. Combettes P.L., Hirstoaga S.A. Equilibrium programming in Hil-bert spa
es // Journal of Nonlinear and Convex Analysis. 2005.V. 6, � 1. P. 117�136.
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ation of the Arrow-Hurwi
z method forsear
h of saddle points // Mathemati
al notes of the A
ademyof S
ien
es of the USSR. 1980. V. 28, � 5. P. 845�848.4. Malitsky Yu.V., Semenov V.V. An Extragradient Algorithm forMonotone Variational Inequalities // Cyberneti
s and SystemsAnalysis. 2014. V. 50. P. 271�277.Global optimality 
onditions for d.
.programming∗A.S. StrekalovskyMatrosov Institute for System Dynami
s and Control Theoryof SB RAS, Irkutsk, RussiaConsider the optimization problem:
(P) :

f0(x) ↓ min
x
, x ∈ S ⊂ IRn,

fi(x) ≤ 0, i ∈ I := {1, . . . ,m},

} (1)where all fi = gi(x) − hi(x), i ∈ I ∪ {0} with smooth 
onvex fun
tions
gi(·), hi(·), gi, hi : IR

n → IR, i ∈ I ∪ {0}.Let introdu
e the l∞-penalty fun
tion [1℄�[7℄
W (x) := max{0, f1(x), . . . , fm(x)} = max{0, fi(x), i ∈ I}. (2)Further, 
onsider the penalized problem as follows (σ > 0)

(Pσ) : Θσ(x) := f0(x) + σW (x) ↓ min
x
, x ∈ S. (3)As well-known [1℄�[7℄, if z ∈ Sol(Pσ), and z ∈ D := {x ∈ S : fi(x) ≤ 0,

i ∈ I}, then z ∈ Sol(P). In addition, if z ∈ Sol(P), then under supple-mentary 
onditions [2, 3, 5, 7℄ for some σ∗ > 0, σ∗ ≥‖ λz ‖1 (where λzis the KKT-multiplier 
orresponding to z), the in
lusion z ∈ Sol(Pσ)holds. Moreover [6℄, Sol(P) = Sol(Pσ), so that Problems (P) and (Pσ)turn out to be equivalent ∀σ ≥ σ∗.It 
an be readily seen that the penalized fun
tion Θσ(·) is a d.
.fun
tion, sin
e the fun
tions fi(·), i ∈ I ∪ {0}, are as su
h. A
tually,sin
e σ > 0,
Θσ(x) = Gσ(x)−Hσ(x), (4)

∗This resear
h is supported by the Russian S
ien
e Foundation (grant 15-11-20015).
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Hσ(x) := h0(x) + σ

∑

i∈I

hi(x), (5)
Gσ(x) := Θσ(x) +Hσ(x) =

= g0(x) + σmax

{
m∑
i=1

hi(x);max
i∈I

[gi(x) +
∑
j 6=i

hi(x)]

}
,

(6)it is 
lear that Gσ(·) and Hσ(·) are 
onvex fun
tions.For z ∈ S denote ζ := Θσ(z).Theorem 1. It z ∈ Sol(Pσ), then
∀(y, β) : Hσ(y) = β − ζ, (7)the following inequality holds

Gσ(x)− β ≥ 〈∇h0(y) + σ
∑

i∈I

∇hi(y), x− y〉 ∀x ∈ S. (8)#So, Theorem 1 redu
es non
onvex (d.
.) Problem (Pσ) to a solvingthe family of 
onvex linearized problems of the form
(PσL(y)) : Gσ(x)− 〈∇Hσ(y), x〉 ↓ min

x
, x ∈ S, (9)depending on the parameters (y, β) ful�lling the equation (7).If for su
h a pair (ŷ, β̂) and some u ∈ S (u may be a solution to(PσL(y))) the inequality (8) is violated, i.e.

Gσ(u) < β + 〈∇Hσ(y), u− y〉, (10)then due to 
onvexity of Hσ(·) we obtain with the help of (7) that
Gσ(u) < β +Hσ(u)−Hσ(y) = Hσ(u) + ζ.The latter implies that Θσ(u) = Gσ(u) −Hσ(u) < ζ := Θσ(z), so that

u ∈ S is better that z, i.e. z /∈ (Pσ).It means that Global Optimality Conditions (7), (8) of Theorem 1possesses the 
onstru
tive (algorithmi
) property allowing to 
onstru
tlo
al and global sear
h methods for solving Problem (Pσ) [8, 9℄.In parti
ular, they enable us to es
ape a lo
al pit of (Pσ) and to rea
ha global solution. The question arise about the existen
e of su
h a tuple
(y, β, u). the answer is given by following result.



64 Optimization methodsTheorem 2. Let for a point z ∈ S there exists v ∈ IRn su
h that
(H) : Θσ(v) > Θσ(z).If z not a solution to Problem (Pσ), then one 
an �nd a pair

(y, β) ∈ IRn+1, satisfying (7), and a point u ∈ S su
h that the inequality(10) holds. #Now let us set y = z in (9). Then from (8) it follows that
β = Θσ(z) +Hσ(z) = Gσ(z).Furthermore, from (9) we derive

Gσ(x)−Gσ(z) ≥ 〈∇Hσ(z), x− z〉 x ∈ S,that yields that z is a solution to the 
onvex linearized problem
(PσL(z)) : Gσ(x) − 〈∇Hσ(z), x〉 ↓ min

x
, x ∈ S,As well-known [1℄�[3℄, [6℄, due to the presentation (6) the latter problemamounts to the next one

g0(x) − 〈∇Hσ(z), x〉+ σt ↓ min
(x,t)

, x ∈ S, t ∈ IR,
∑
i∈I

hi(x) ≤ t, gi(x) +
∑
j 6=i

hi(x) ≤ t, i ∈ I.



 (11)Moreover, the KKT-
onditions to Problem (11) provide for KKT-
ondi-tions at z for the original Problem (P).So, the Global Optimality Conditions (7), (8) of Theorem 1 and 2are 
onne
ted with 
lassi
al optimization theory [1℄�[7℄.Referen
es1. No
edal J., Wright S.J. Numeri
al Optimization. New York: Sprin-ger, 2006.2. Bonnans J.-F., Gilbert J.C., Lemar�e
hal C., Sagastiz�abal C.A.Numeri
al Optimization: Theoreti
al and Pra
ti
al Aspe
ts. 2nded. Berlin: Springer-Verlag, 2006.3. Izmailov A.F., Solodov M.V. Newton-Type Methods for Optimi-zation and Variational Problems. New York: Springer, 2014.4. Ro
kafellar R.T., Wets R.J.-.B. Variational Analysis. New York:Springer, 1998.5. Clarke F.H. Optimization and Nonsmooth Analysis. New York:Wiley-Inters
ien
e, 1983.



Optimization methods 656. Hiriart-Urruty J.-B., Lemar�e
hal C. Convex Analysis and Minimi-zation Algorithms. Berlin: Springer-Verlag, 1993.7. Burke J.V. An exa
t penalization viewpoint of 
onstrained optimi-zation // SIAM J. Control and Optimization. 1991. V. 29(4).P. 968-998.8. Strekalovsky A.S. On Solving Optimization Problems with HiddenNon
onvex Stru
tures // Optimization in S
ien
e and Engineering(ed. by T.M. Rassias, C.A. Floudas, S. Butenko). New York: Sprin-ger, 2014. P. 465�502.9. Strekalovsky A.S. Elements of non
onvex optimization.Novosibirsk: Nauka, 2003 (in Russian).Solving quadrati
 equation systemsvia non
onvex optimization methods∗A.S. Strekalovsky, M.V. Yanulevi
h, and M.V. BarkovaMatrosov Institute for System Dynami
s and Control Theoryof the Siberian Bran
h of RAS , Irkutsk, RussiaConsider the following system of quadrati
 equations [8℄:
fi(x) =

1

2
〈x,Cix〉+ 〈di, x〉+ γi = 0, i = 1, 2, . . . ,m, (1)where Ci, i = 1,m, are, in general, inde�nite (n× n)-matri
es su
h that

Ci = Ai −Bi, Ai, Bi > 0 ∀i ∈ {1, 2, . . . ,m}.Further, we redu
e system (1) to nonsmooth optimization problemas follows:
(P) : F (x) =

m∑

i=1

|fi(x)| = G(x) −H(x) ↓ min
x
, x ∈ IRn, (2)where obje
tive fun
tion F (·) is the (d.
.) fun
tion [1,2,6℄, whi
h 
anbe represented as a di�eren
e of two 
onvex fun
tions. For instan
e, we
onsider two d.
. representation (j = 1, 2) of the form

F (x) = Gj(x)−Hj(x) ∀x ∈ IRn. (3)

∗This resear
h is supported by Russian S
ien
e Foundation, proje
t No. 15-11-20015.



66 Optimization methodsHere the �rst d.
. representation (3) is given by the fun
tions:
G1(x) = 2

m∑
i=1

max{ 1
2 〈x,Aix〉+ 〈di, x〉+ γi,

1
2 〈x,Bix〉},

H1(x) =
m∑
i=1

[
1
2 〈x, (Ai +Bi)x〉 + 〈di, x〉+ γi

]
.Further, The se
ond d.
. representation is as follows:

G2(x) =
m∑
i=1

max{〈x,Aix〉+ 〈di, x〉+ γi, 〈x,Bix〉 − 〈di, x〉 − γi},

H2(x) =
1
2

m∑
i=1

〈x, (Ai +Bi)x〉.Note that in both d.
. representations (3) the fun
tions Gj(·), j = 1, 2,are nonsmooth and fun
tions Hj(·), j = 1, 2, are di�erentiable.Proposition 1. If z is a solution to problem (P) and F (z) = 0,then z is a solution to system (1).For solving optimization problem (P) we apply the Global Sear
hTheory [1,2℄ based on ne
essary and su�
ient global optimality 
ondi-tions. Note that global sear
h method in
ludes two prin
ipal parts:lo
al sear
h and pro
edures of improving a 
riti
al point z ∈ IRn (i.epro
edures for funding a point u ∈ IRn su
h that F (u) < ζ, where
ζ := F (z)) provided by a lo
al sear
h method.To this end for a �xed ve
tor y ∈ IRn it is ne
essary to solvethe following nonsmooth 
onvex auxiliary (partially linearized) problem(both on every step of the spe
ial lo
al sear
h method and on the stageof improving a 
riti
al point):
(PL(y)) : Φy(x) = Gj(x) − 〈∇Hj(y), x〉 ↓ min

x
, x ∈ IRn, j = 1, 2.In order to perform it, we solve the nonsmooth problem (PL(y))via the smooth 
onvex problem, in
reasing the dimension from n upto (m + n). For the �rst 
ase of d.
. representation (3) the problem

(PL(y)) is redu
ed to the following smooth 
onvex optimization problemwith quadrati
 inequality 
onstraints:




θy(x, t) = 〈e, t〉 − 〈∇H1(y), x〉 ↓ min
(x,t)

, (x, t) ∈ IRn+m,

1

2
〈x,Aix〉+ 〈di, x〉+ γi ≤

ti
2
,

〈x,Bix〉 ≤ ti, i = 1, 2, . . . ,m,

(4)



Optimization methods 67where e = (1, 1, . . . , 1)⊤ ∈ IRm and the gradient of H1(·) at point y ∈ IRnis as follows
∇H1(y) =

m∑

i=1

(Ai +Bi)y +

m∑

i=1

di.In addition, for the se
ond d.
. representation we employ anothersmooth 
onvex optimization problem:




θy(x, t) = 〈e, t〉 − 〈∇H(y), x〉 ↓ min
(x,t)

, (x, t) ∈ IRn+m,

〈x,Aix〉+ 〈di, x〉+ γi ≤ ti,
〈x,Bix〉 − 〈di, x〉 − γi ≤ ti, i = 1, 2, . . . ,m,

(5)where
∇H2(y) =

m∑

i=1

(Ai +Bi)y.The 
omputational experiments were 
arried out on test problems [9℄with dimension up to 100. For solving smooth auxiliary problem (4) and(5) we apply existing methods and software (for instan
e, IBM ILOGCPLEX) for smooth 
onvex optimization [3-5℄. In addition, we 
omparethe e�e
tiveness of developed algorithms with rather popular solvers, forinstan
e [7℄. Referen
es1. Strekalovsky A.S. Elements of Non
onvex Optimization.Novosibirsk: Nauka, 2003 (in Russian).2. Strekalovsky A.S. On Solving Optimization Problems with HiddenNon
onvex Stru
tures. In: Rassias, T.M., Floudas, C.A., Butenko,S. (eds.) Optimization in S
ien
e and Engineering. New York:Springer, 2014. P. 465�502.3. No
edal J., Wright S.J. Numeri
al Optimization. New York: Sprin-ger, 2006.4. Bonnans J.-F., Gilbert J.C., Lemar�e
hal C., Sagastiz�abal C.A.Numeri
al Optimization: Theoreti
al and Pra
ti
al Aspe
ts, 2ndedn. Berlin, Heidelberg: Springer-Verlag, 2006.5. Izmailov A.F., Solodov M.V. Newton-Type Methods for Optimiza-tion and Variational Problems. New York: Springer, 2014.6. Hiriart-Urruty J.-B. Generalized Di�erentiability, Duality andOptimizaton for Problems dealing with Di�eren
e of ConvexFun
tions. In: Ponstein, J. (ed.) Convexity and Duality in
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ture Notes in E
onomi
s and Mathem. Systems.V.256. Berlin: Springer-Verlag, 1985. P. 37�69.7. Bellavia S., Ma

oni M., Morini B. STRSCNE: A S
aled TrustRegion Solver for Constrained Nonlinear Equations // COAP.2004. V. 28, �. 1. P. 31�50.8. Ortega J.M., Rheinboldt W.C. Iterative Solution of NonlinearEquations in Several Variables. New York: A
ademi
 Press, 1970.9. Roose A., Kulla V., Lomp M., Meressoov T. Test examples ofsystems of non-linear equations. Tallin: Estonian Software andComputer Servi
e Company, 1990.Variant of simplex-like method for linearsemi-de�nite programming problem∗V.G. ZhadanDorodni
yn Computing Centre, FRC CSC RAS, Mos
ow, RussiaLet Sn denote the spa
e of symmetri
 matri
es of order n, and let Sn
+be the 
one in Sn, 
onsisting of positive semi-de�nite matri
es. We usealso the inequality M � 0 to indi
ate that a matrix M belongs to Sn
+.The inner produ
t of matri
es M1 and M2 of the same size is de�ned asthe tra
e of the matrix MT

1 M2 and is denote by M1 •M2.The linear semi-de�nite programming problem is to �nd
min C •X,

Ai •X = bi, i = 1, . . . ,m, X � 0,
(1)where the matri
es C ∈ Sn and Ai ∈ Sn, 1 ≤ i ≤ m, are given. ThematrixX ∈ Sn is a variable. We assume that the matri
es Ai, 1 ≤ i ≤ m,are linear independent.The problem dual to (1) has the form

max bTu,∑m
i=1 u

iAi + V = C, V � 0,
(2)where b = [b1, . . . , bm], V ∈ Sn.Let n△ = n(n+1)/2/ be the n-th triangular number. Let also ve
hXdenote the dire
t sum of parts of 
olumns of X ∈ Sn beginning with thediagonal entry. The dimension of ve
hX is equal to n△. The operation

∗This resear
h is supported by the Program of Fundamental Resear
h of RussianA
ademy of S
ien
es I.5 P, and by the Russian Foundation for Basi
 Resear
h(proje
ts no.15-01-08259 and no.14-07-00805).
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X is de�ned similarly. It di�ers from the pre
eding operation ve
hXonly in that the o�-diagonal entries of X are multiplied by √
2 beforepla
ing into sve
X .We denote by Ln and Dn the elimination and dupli
ated matri
esrespe
tively [1℄, and by L̃n = D2Ln, D̃n = DnD

−1
2 . The matrix D2 oforder n△ is diagonal with the ve
tor sve
E on its diagonal, where E isa matrix of ones.The optimality 
onditions for both problems (1) and (2) 
an bewritten in ve
tor form as

〈sve
X, sve
V 〉 = 0,
Asvecsve
X = b,sve
V = sve
C −AT

svecu,
(3)where angle bra
kets indi
ate the Eu
lidean inner produ
t in �nite-dimensional ve
tor spa
e, and Asvec denotes the m × n2 matrix withsve
Ai as its rows, 1 ≤ i ≤ m. Matri
es X and V must be positivesemi-de�nite.It is possible to obtain various numeri
al methods for problems (1)and (2), solving the system (3) by various ways. Here we 
onsider thevariant of simplex-like method.Denote by FP the feasible set in problem (1). Let X ∈ FP , and let

X = QDiag (η1, . . . , ηr, 0, . . . , 0)QT ,where Q is an orthogonal matrix of order n, ηi > 0, 1 ≤ i ≤ r. Let
QB be the n × r matrix formed from the �rst r 
olumns of Q, and let
AQB

i = QT
BAiQB, 1 ≤ i ≤ m. Then X is an extreme point of FP , if andonly if rank [AQB

1 , . . . , AQB
m

]
= r△.Thus the point X ∈ FP may be extreme only when the rank r of X issu
h that r△ ≤ m. We say that the extreme point X ∈ FP is regularif r△ = m. Otherwise, in the 
ase where r△ < m, we 
all the extremepoint X irregular.Denote by AQB

svec the m× r△ matrix whose rows are ve
tors sve
Ai,
1 ≤ i ≤ m. Also denote by CQB the matrix QT

BCQB and by V QB � thematrix QT
BV QB. It is evident that the �rst equality in (3) is ful�lled, if

V QB = 0rr.
1. Pivoting in a regular extreme point X . In this 
ase we have thesystem of linear equationssve
V QB = sve
CQB −

(
AQB

svec

)T
u = 0r△ , (4)



70 Optimization methodswith the non-degenerate matrix AQB
svec of order m = r△. Therefore

u =
((

AQB
svec

)T)−1 sve
CQB .If the matrix V (u) = C −∑m
i=1 u

iAi is positive semi-de�nite, then X isa solution of problem (1). In what follows we assume that it is not su
ha 
ase.Represent the matrix V in the form V = HDiag(θ)HT , where H isan orthogonal matrix. Then there exists the eigenvalue θk < 0 among alleigenvalues θ. Let hk be the 
orresponding eigenve
tor. It 
an be provedthat the ve
tor hk does non belong to the 
olumns spa
e of the matrix
QB. The point X is updated in a

ordan
e with the following formulae

X̄ = X + α∆X, ∆X = QB∆ZQ
T
B + hkh

T
k , (5)where α > 0 is a stepsize, and the matrix ∆Z satis�es to equations

Ai •
[
QB∆ZQ

T
B + hkh

T
k

]
= 0, 1 ≤ i ≤ m.The value of obje
tive fun
tion C • X in the updated point X̄ is lessthan in the previous point X , namely

C • X̄ = C •X + αθk < C •X. (6)The point X̄ is an extreme point of FP too.
2. Pivoting in an irregular extreme point X . In this 
ase the system(4) is underdetermined. Therefore we take the normal solution

u =
(
AQB

svec

) [(
AQB

svec

)T (AQB
svec

)]−1 sve
CQB .The matrix ∆X in (5) is repla
ed by the following one
∆X = [QB hk]

[
∆Z w
wT 1

]
[QB hk]

T
,where the ve
tor w is 
hosen by a spe
ial way in order to preserve theformulae (6). Here we suppose in addition that m = r△ + p with 0 <

p < r.Theorem. Let the problem (1) be nondegenerate. Let also the startingextreme point X0 ∈ FP be su
h that the set
FP (X0) = {X ∈ FP : C •X ≤ C •X0}
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onstrained. Then the sequen
es {Xk} generated by the proposedmethod belongs to FP (X0) and 
onverges to the solution of (1).There are some other generalizations of simplex-method for linearsemi-de�nite programming problems (see, for example, [2℄).Referen
es1. Magnus J.R., Neude
ker H. The elimination matrix: some lemmasand appli
ations // SIAM J. Alg. Dis
. Math. 1980. V. 1. � 4.P. 422�449.2. Lasserre J.B. Linear programming with positive semi-de�nitematre
es // MPE. 1996. V. 2. P. 499�522.Covering 
onstant of the restri
tion of alinear mapping to a 
onvex 
one∗S.E. Zhukovskiy and Z.T. ZhukovskayaPeoples' Friendship University of Russia, Mos
ow, RussiaThis work relies on the results in [1℄, and is an extension of thedevelopment in [2, 3℄.Given a linear mapping A : Rn → R
k and ve
tors b1, ..., bs ∈ R

n,denote
K := {x ∈ R

n : 〈x, bj〉 ≤ 0, j = 1, s}.Here 〈·, ·〉 states for inner produ
t, | · | states for the 
orrespondingEu
lidian norm.In this paper, we 
onsider the problem of �nding of a prior estimatefor distan
e from an arbitrary point x0 ∈ K to the set of solutions tothe system Ax = y, x ∈ K, where y ∈ AK is an arbitrary point.Ho�man's lemma implies that there exists α > 0 su
h that
∀x0 ∈ K, ∀ y ∈ AK ∃x ∈ K : y = Ax and |x−x0| ≤

|y −Ax0|
α

. (1)So, the desired estimate is linear. There appears a natural question: how
an the number α be 
al
ulated for given matrix A and ve
tors bj. Belowwe state a proposition that redu
es this problem to the same problem inthe spa
e Rn−1 with the lower dimension.The mentioned 
onstant α is also 
alled the 
overing 
onstant of themapping A|K : K → AK. Re
all the 
orresponding 
on
ept. Let X, Ybe metri
 spa
es with metri
s ρX and ρY , respe
tively, α > 0 be given.
∗This resear
h is supported by the RFBR grants (proje
ts �15-01-04601, 16-01-00677).



72 Optimization methodsDe�nition. The mapping Ψ : X → Y is 
alled α-
overing, if
BY (Ψ(x0), αr) ⊂ Ψ

(
BX(x0, r)

)
∀x0 ∈ X, ∀r ≥ 0. (2)The least upper bound of all positive α for whi
h (2) holds is 
alled
overing modulus of Ψ. We denote this number by cov(Ψ).The 
on
ept of 
overing was used in [1℄ to derive su�
ient 
onditionsfor existen
e of 
oin
iden
e points of two mappings. In [2℄, the stabilityof 
oin
iden
e points of 
overing and Lips
hitz mappings was proved.The 
overing mappings are applied for investigation of impli
it ordinarydi�erential equations (see [3℄), abstra
t and integral Volterra equations(see [4℄), impli
it di�erential in
lusions (see [5℄), et
.The stated de�nition dire
tly implies that the mapping A|K : K →

AK is α-
overing if and only if (1) holds. So, the initial problem 
an bestated as a the problem of �nding of the mapping A|K 
overing 
onstant.At the same time, the most interest 
auses not �nding of α > 0 satisfying(1), but the number cov(A|K), sin
e the interval (0, cov(A|K)) is the setof all the desired α.Let us state the main result. Assume that(i) interior of K is nonempty;(ii) for ea
h j = 1, s, inequality 〈bj, x〉 ≤ 0 is not a 
onsequen
e of thesystem 〈bi, x〉 ≤ 0, i 6= j;(iii) linear mapping A is not inje
tive.Denote by Γj the fa
e of the 
one K that is orthogonal to bj, i.e. Γj =
{x ∈ K : 〈bj , x〉 = 0}. It is a straightforward task to ensure that thedimension of Γj equals to n− 1 if (ii) holds.Lemma. Assumptions (i)�(iii) implies cov(A|K) = min

j=1,s
cov(A|Γj

).Assumptions (i)�(iii) are not burdensome. In order to assumption(ii) be satis�ed, from the system 〈bi, x〉 ≤ 0, i = 1, s, there 
an beex
luded the inequalities 〈bj, x〉 ≤ 0, whi
h are 
onsequen
es of thesystems 〈bi, x〉 ≤ 0, i 6= j. The set of solutions to the obtained system
oin
ides with K. If the interior of K is empty then the initial problem
an be 
onsidered on the linear hull of the 
one K instead of Rn. In this
ase assumption (iii) 
an be 
hanged by the noninje
tivity of A on thelinear hull of K.This lemma 
annot be applied in the 
ase when (i) and (ii) holdand (iii) is violated. However, in this 
ase, it is obvious that cov(A|K)
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oin
ide with cov(A), whi
h is equal to the least eigenvalue of A∗A (see,for example, [6℄, �6.2.2). Referen
es1. Arutyunov A.V. Covering mappings in metri
 spa
es and �xedpoints // Doklady Mathemati
s, 2007. V. 76. Iss. 2. P. 665�668.2. Arutyunov A.V. Stability of Coin
iden
e Points and Properties ofCovering Mappings // Mat. Zametki, 2009. V. 86. Iss. 2. P. 163�169.3. Arutyunov A.V., Avakov E.R., Zhukovskiy E.S. Coveringmappings and their appli
ations to di�erential equations unsolvedfor the derivative // Di�. Equations, 2009. V. 45. Iss. 5. P. 627�649.4. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coveringmappings and well-posedness of nonlinear Volterra equations //Nonlinear Analysis: Theory, Methods and Appli
ations, 2012. V.75. P. 1026�1044.5. Arutyunov A.V., Pereira F.L., V.A. de Oliveira, Zhukovskiy E.S.,Zhukovskiy S.E. On the solvability of impli
it di�erential in
lusions// Appli
able Analysis, 2015. V. 94. Iss. 1. P. 129�143.6. Io�e A.D., Tikhomirov V.M. Theory of Extremal Problems.Mos
ow: Nauka, 1984 (in Russian).Live migration of virtual resour
es inmulti-tenant data 
enters ∗I.A. Zotov and V.A. KostenkoLomonosov Mos
ow State Univer
ity , Mos
ow , Russian FederationThis work extends [1,2℄ and relies heavily on des
riptions introdu
edin those works.In a modern multi-tenant data 
enters s
heduling is a 
ru
ialproblem, that greatly a�e
ts performan
e and utilization of physi
aldevi
es and overall 
omputational 
apabilities. Heavily loaded data
enters su�er from resour
e fragmentation and underutilization. Theseissues 
ould be resolved during maintenan
e, but this always requiresinterruption of virtual resour
es a

essibility, whi
h is impossible inInfrastru
ture-as-a-Servi
e (IaaS) model, where end user spe
i�
allydemands uninterrupted servi
es.
∗This resear
h is supported by the Ministry of Edu
ation and S
ien
e of theRussian Federation, ID RFMEFI60714X0070, agreement 14.607.21.0070.



74 Optimization methodsIn [1,2℄ we propose a basi
 mathemati
al de�nition of IaaSmultitenant data 
enter along with a tenant de�nition and a set ofSLA 
onstraints to des
ribe uninterruptable servi
e 
ontra
ts. In [3℄ wede�ne a s
heduling algorithm that resolves pla
ement problem of tenantsonto physi
al resour
es while holding SLA's. This algorithm shows asigni�
ant improvement in resour
e utilization over those implementedin [4-6℄, providing either smaller load on ea
h physi
al devi
e, or fullload on the subset of servers, allowing to shut down remaining ones thusin
reasing energy e�
ien
y of data 
enter.The experimental resear
h presented in [3℄ shows, that e�e
tiveresour
e utilization in a heavily fragmented data 
enter with more than60% utilization yields many relo
ations of working virtual ma
hines anddatabase instan
es. The number of virtual resour
es relo
ated grows withthe overall load of data 
enter. To maintain uninterrupted servi
e fromthose resour
es the data 
enter 
ontrol layer should provide me
hanismsfor live migration. A s
hedule of the live migration should be 
onstru
tedby the s
heduling algorithm that 
reates a tenant pla
ement. If it
an't devise the migration s
hedule for a given pla
ement, the namedpla
ement should be reje
ted and re
onstru
ted from s
rat
h.We des
ribe a set of parameters that will a�e
t migration of a virtualma
hine or a database instan
e in a live data 
enter. The key parametersof migrating virtual ma
hine in this respe
t are RAM 
onsumption, RAMex
hange speed and external 
ommuni
ations speed. The parameter ofdata 
enter is 
urrent load of it's resour
es, namely network resour
es.We 
laim that the time of migration of a given virtual ma
hine dependsonly on those parameters. Su�
ient network throughput between 
urrentworking ma
hine and it's mirrored repli
a on the destination serverallows to transfer all working data to the destination virtual ma
hineuntill it is fully up to date with 
urrent virtual ma
hine. The sour
ema
hine 
an then be transparently disabled and removed from data
enter, thus �nishing the migration pro
ess.We then de�ne a set of 
onstraints that allows to 
al
ulate overallmigration time of virtual ma
hine on given data 
enter workload andvirtual ma
hine parameters. This 
onstraints allow to devise migration
osts of all the virtual resour
es that need to be relo
ated alongside witha general feasibility of 
omplete migration s
hedule.Based on these 
onstraints we introdu
e modi�ed s
heduler algorithm[3℄, that is aware of migration 
osts and is able to 
onstru
t a feasiblemigration s
hedule. It allows to 
onstru
t only resour
e pla
ement that
an be performed on a live data 
enter without interrupting any of



Optimization methods 75working or migrating virtual resour
es servi
es. The algorithm 
an alsobe provided with a dire
tive migration time, so that the 
onstru
tedmigration s
hedule does not ex
eed this additional 
onstraint. Data
enter that utilizes the given s
heduling algorithm is able to provideuninterrupted servi
e as well as guarantee all tenants SLA's during thetime of migration.This work introdu
es mathemati
al apparatus to formulate and 
he
ktime 
onstraints for migration of virtual resour
es based only on theirparameters and work load of data 
enter. Using this apparatus wede�ne a migration-aware s
heduling algorithm that 
an be used ass
heduler in data 
enter, whi
h implements IaaS model and is to provideuninterrupted servi
e alongside with high utilization of it's resour
es.Referen
es1. P. M. Vdovin, I. A. Zotov, V. A. Kostenko, et al., "Data 
enterresour
e allo
ation problem and approa
hes to its solution,"//in VII Mos
ow Int. Conf. on Operations Resear
h (ORM2013)(Vy
hisl. Tsentr Ross. Akad. Nauk, Mos
ow, 2013), Vol. 2, pp.30-32.2. P. M. Vdovin, I. A. Zotov, V. A. Kostenko et al., "Comparingvarious approa
hes to resour
e allo
ating in data 
enters"//Journal of Computer and Systems S
ien
es International. � 2014.� Vol. 53, no. 5. � P. 689-701.3. Zotov I. A., Kostenko V. A. "Resour
e allo
ation algorithm in data
enters with a uni�ed s
heduler for di�erent types of resour
es"//Journal of Computer and Systems S
ien
es International. � 2015.� Vol. 54, no. 1. � P. 59-68.4. S. Nagendram, J. V. Lakshmi, D. V. Rao, et al., "E�
ient resour
es
heduling in data 
enters using MRIS,"// Indian J. Comput. S
i.Eng. 2 (2011).5. M. Korupolu, A. Singh, and B. Bamba, "Coupled pla
ementin modern data 
enters,"// in IEEE Int. Symp. on Parallel &Distributed Pro
essing (IPDPS, New York, 2009), pp. 1-12.6. Y. Zhu and M. H. Ammar, "Algorithms for assigning substratenetwork resour
es to virtual network 
omponents,"// in 25th Int.Conf. on Computer Communi
ations (INFOCOM), Bar
elona,2006, pp. 1-12.



Multiple obje
tive de
isionmaking
Convolution methods for 
riteria of e�
ien
yand risk in the problem of investmentportfolio 
hoi
eV.A. Gorelik and T.V. ZolotovaDorodni
yn Computing Centre, FRC CSC RAS, Finan
ial Universityunder the Government of the Russian Federation, Mos
ow, RussiaThe development of optimality 
riteria for a se
urities portfolioinvolv- es solving the issue on the relationship between the return andrisk of the portfolio. In [4℄, Markowitz stated the problem on the sele
tionof an optimal portfolio as the problem of minimizing the di�eren
ebetween the varian
e and the expe
tation of the portfolio return. Inaddition, in the same book the problem of maximizing the expe
tedreturn under a 
onstraint on the varian
e is 
onsidered. The problemof minimizing the varian
e under the 
onstraint on the return is also
onsidered. Solutions of all these problems are e�
ient portfolios. In [2,3℄, the problem on portfolio sele
tion was 
onsidered as the problemof maximizing a linear 
onvolution of 
riteria �expe
tation�varian
e�with a weight fa
tor (risk 
oe�
ient). By the 
onvexity of the set ofattainable values for the expe
tation and varian
e of portfolios (in the�north-west� dire
tion) it gives ne
essary and su�
ient 
onditions forthe Pareto optimality, i.e., any problem whose solution is an e�e
tiveportfolio is equivalent to a given problem at a 
ertain risk fa
tor.In [1℄, we 
onsidered the problem of minimizing the 
onvolution of theratio type with the risk fun
tion de�ned in the metri
 l2 and the problem



Multiple obje
tive de
ision making 77of minimizing the probabilisti
 risk fun
tion. We also proposed a methodof redu
tion of su
h problems to problems of quadrati
 programming(for the problem of minimizing the probabilisti
 risk fun
tion underthe assumption of a normal distribution of random returns of �nan
ialinstruments).Here we 
onsider one of the possible statements, namely, we de�nean optimal portfolio as a solution of the problem of maximizing theexpe
tation of the portfolio return, provided that the probability of anegative random value of the portfolio return does not ex
eed a given,su�
iently small value:
max
x

r̄x, P (rx ≤ 0) ≤ ε, xe = 1, x ≥ 0, (1)where ε is a given su�
iently small positive value, e = (1, ..., 1), and Pis the probability, r̄ = (r̄1, ..., r̄i, ..., r̄n) is the ve
tor of expe
tations of�nan
ial instruments.We show that problem (1) is redu
ed to a problem of 
onvex program-ming and its solution 
oin
ides with the solution of the problem ofmaximizing the linear 
onvolution of the 
riteria of the expe
tation andthe standard deviation of the random portfolio return for some weight
oe�
ient of the standard deviation. Consider the problem
max

x
r̄x, kr̄x ≥ (xKx)

1/2, xe = 1, x ≥ 0, (2)for whi
h the Lagrange fun
tion
L(x, λ) = r̄x + λ(kr̄x − (xKx)

1/2) (3)is de�ned on the setX = {x|xe = 1, x ≥ 0}, λ is the Lagrangemultiplier,
k is a positive 
oe�
ient, K = (σij)n×n is the 
ovarian
e matrix.Lemma. If the 
onvex programming problem (2) has a solution x0and the 
orresponding Lagrange multiplier is positive, λ0 > 0, i.e.,
(x0, λ0) is a saddle point of the fun
tion (3), then x0 is a solution ofthe problem

max
x

[r̄x − λ0

1 + λ0k
(xKx)

1/2], xe = 1, x ≥ 0. (4)Theorem 1. Let {ri} be a system of random variables ea
h of whi
hhas a normal distribution, r̄i be the expe
tation, K = (σij)n×n be the
ovarian
e matrix, and let the 
onditions of the lemma hold. Then the



78 Multiple obje
tive de
ision makingsolution of problem (1) 
oin
ides with the solution of the problem ofmaximizing the linear 
onvolution of the 
riteria of the expe
tation andthe standard deviation of the random portfolio return:
max
x∈X

[r̄x − α1(xKx)
1/2], (5)where α1 = λ0

1+λ0d , d = (Φ−1(1−2ε))−1, Φ(·) is the Lapla
e fun
tion, λ0is the value of the Lagrange multiplier in problem (2).Now we �nd an optimal portfolio as a solution of the problemof maximizing the linear 
onvolution of the expe
tation and varian
e
riteria for the portfolio return with the weight 
oe�
ient α > 0:
max

x
[r̄x − α(xKx)], xe = 1, x ≥ 0. (6)We examine the following problem: In whi
h 
ase solutions ofproblems (1) and (6) 
oin
ide?Theorem 2. Let x0 be a solution of problem (1), the optimal valueof the Lagrange multiplier in problem (2) is positive, λ0 > 0, and the
ovarian
e matrix K = (σij)n×n is strongly positive de�nite. Then thereexists a value of the weight 
oe�
ient α in problem (6) su
h that thesolutions of problems (1) and (6) 
oin
ide.Theorem 2 proves the existen
e of a value of the risk 
oe�
ient αin problem (6) for whi
h solutions of problems (1) and (6) 
oin
ide.However, Theorem 2 allows one to �nd the risk 
oe�
ient only by solving

min
x
xKx, r̄x ≥ r0p, xe = 1, x ≥ 0, (7)where r0p is the expe
ted return of a portfolio at the solution point ofproblem (1), i.e. r̄x0 = r0p. In the following assertion (Theorem 3), weobtain a value of the risk 
oe�
ient α for full-size portfolios.Theorem 3. Let the 
onditions of Theorem 2 be satis�ed and leta solution of problem (1) be a full-size portfolio. If in problem (6) theweight 
oe�
ient α satis�es the equation

4(1−
(

r̄K−1e
eK−1e

)2
d2)α2 − 4d2

(
r̄K−1e
eK−1e

)(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)
α+

+
(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)
− d2

(
r̄K−1r̄ − (eK−1 r̄)2

eK−1e

)2
= 0,where e = (1, ..., 1), r̄ is the ve
tor of expe
ted returns, d =

(Φ−1(1−2ε))−1, ε > 0, and Φ(·) is the Lapla
e fun
tion, then solutionsof problems (1) and (6) 
oin
ide.



Multiple obje
tive de
ision making 79Thus, if we use the model with a probabilisti
 risk fun
tion for thesear
h for optimal portfolios, the results of this study make it possibleto determine the equivalent ratio of the investor to risk. Problem (6) is
omputationally most 
onvenient; for the sear
h for an exa
t solution itis redu
ed to a system of linear equations. The results obtained in thepresent paper allow one to solve problem (6) instead of (1) for 
ertainvalues of the parameters of these problems.Referen
es1. Gorelik V.A., Zolotova T.V. Criteria for evaluation and the optima-lity of risk in 
omplex organizational systems. Mos
ow: CC RAS,2009.2. Gorelik V.A., Zolotova T.V. Some problems of the assessment of
orrelation of returns in investment portfolios // Probl. Upravl.2011. â½� 3, P. 36�42.3. Gorelik V.A., Zolotova T.V. Stability 
riteria for the sto
k marketand their relationship with the awareness and the prin
iples ofinvestor behavior // Fin. Zh. 2013. â½� 3, P. 17�28.4. Markowitz H. M. Portfolio Sele
tion: E�
ient Diversi�
ation ofInvestment. � N.-Y.: Wiley, 1959.Composed methods to redu
e the Pareto set∗V.D. NoghinSaint Petersburg State University, Saint-Petersburg, RussiaThe paper deals with a multi
riteria 
hoi
e problem, whi
h has inits setting a set of feasible alternatives X , a numeri
al ve
tor 
riterion
f = (f1, f2, . . . , fm) and a binary preferen
e relation ≻X of the De
isionMaker whi
h is de�ned on the set of alternatives and usually unknown.A set of sele
ted alternatives is denoted by C(X). This set is a solution ofthe multi
riteria 
hoi
e problem and one must be determined at the endof de
ision making pro
ess. Moreover, we introdu
e C(Y ) = f(C(X)).Let Y be a set of feasible ve
tors, i.e. Y = {y = f(x) | for some
x ∈ X}. By ≻Y we shall denote a preferen
e relation, de�ned on Y , andalso

y ≻Y y′ ⇐⇒ x ≻X x′ ∀ x ∈ x̄, ∀x′ ∈ x̄′, y = f(x), y′ = f(x′),

∗This resear
h is supported by the Russian Fund for Basi
 Resear
h (No 14-07-00746).



80 Multiple obje
tive de
ision makingwhere x̄, x̄′ are 
lasses of equivalen
e generated by the relation x ∼ x′ ⇔
f(x) = f(x′).We shall assume that the following four reasonable axioms areful�lled.Axiom 1 (ex
lusion of dominated alternatives). For any y, y′ ∈ Ythe following impli
ation y ≻Y y′ ⇒ y′ /∈ C(Y ) is true.Axiom 2 (transitivity). There exists an extension ≻ of the relation
≻Y on all spa
e Rm, and also ≻ is transitive.Axiom 3 (
ompatibility). For i = 1, 2, . . . ,m and for any two ve
tors
y, y′ ∈ Rm su
h that

yk = y′k, ∀k 6= i, yi > y′iit follows that y ≻ y′.Axiom 4 (invarian
e with respe
t to linear positive transformation).For any y, y′ ∈ Rm and arbitrary α > 0, c ∈ Rm the impli
ation
y ≻ y′ ⇒ (αy + c) ≻ (αy′ + c)is true.We shall say [1℄ that a quantum of information about the preferen
erelation ≻ with two groups of 
riteria A,B and positive parameters

wi (∀i ∈ A), wj (∀j ∈ B) is given if for any y, y′ ∈ Rm su
h that
yi − y′i = wi (∀i ∈ A), y′j − yj = wj (∀j ∈ B), ys = y′s (∀s /∈ (A ∪ B)))the relation y ≻ y′ holds.Theorem 1.Let X ⊂ Rm be a 
onvex set and a ve
tor-fun
tion
f be 
on
ave on it. Assume that we have a quantum of informationabout the preferen
e relation with two groups of 
riteria A,B and the
orresponding positive parameters. Then for any set of sele
ted ve
tors
C(Y ) the in
lusion
C(Y ) ⊂ Closure(

⋃

µ∈M

{f(x∗) ∈ Y |
p∑

i=1

µigi(x
∗) = maxx∈X

p∑

i=1

µigi(x)})is true, where M = {µ ∈ Rp|µi > 0 ∀i, ∑p
i=1 µi = 1} and p = m −
ard(B) + 
ard(A)
ard(B) 
omponents of g 
onsist of gi = fi ∀i /∈

B, gij = wjfi + wifj ∀i ∈ A and ∀j ∈ B.Theorem 2.Let X ⊂ Rm be a 
onvex set and a ve
tor-fun
tion fbe bounded above and 
on
ave on it. Assume that we have a quantum ofinformation about the preferen
e relation with two groups of 
riteria A,B
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tive de
ision making 81and the 
orresponding positive parameters. Then for any set of sele
tedve
tors C(Y ) the in
lusion
C(Y ) ⊂ Closure(

⋃

u∈U

{f(x∗) ∈ Y |‖u− g(x∗)‖ = minx∈X‖u− g(x)‖})is true, where U = {u ∈ Rp|ui > supx∈Xgi(x) for i = 1, 2, . . . , p} and gis the same as in Theorem 1.Remark 1. It must be noted that for polyhedral 
on
ave ve
tor-fun
tion f and polyhedral set Y the operation 'Closure' may be omittedin above theorems.Theorem 3. Let f be an arbitrary m-dimensional numeri
al ve
tor-fun
tion de�ned on arbitrary set X . Assume that α ∈ R and we have aquantum of information about the preferen
e relation with two groups of
riteria A,B and the 
orresponding positive parameters. Then for anyset of sele
ted ve
tors C(Y ) the in
lusion
C(Y ) ⊂

⋃

u∈U

{f(x∗) ∈ Y |maxi=1,2,...,p‖ui − gi(x
∗)‖ =

= minx∈Xmaxi=1,2,...,p‖ui − gi(x)‖}is true, where U = {u ∈ Rp|∑i=1,2,...,p ui = α} and g is the same as inTheorem 1.Remark 2.All above results take pla
e in general 
ase when we havemore than one quantum of information. Namely, a ve
tor-fun
tion g maybe obtained after taking into a

ount not only one quantum but some�nite 
olle
tion of 
onsistent information quanta about the preferen
erelation. In this 
ase the equality p = m − 
ard(B) + 
ard(A)
ard(B)may be false. For more details about using an arbitrary 
olle
tion ofinformation quanta see [1-3℄. Referen
es1. Noghin V.D. Redu
ing of the Pareto Set: an Axiomati
 Approa
h.Mos
ow: FIZMATLIT, 2016 (in Russian)2. Noghin V.D., Baskov O.V. Pareto Set Redu
tion Based on anArbitrary Finite Colle
tion of Numeri
al Information on thePreferen
e Relation // Doklady Mathemati
s, 2011. V. 83, No.3. P. 418�420.3. Noghin V.D. Redu
ing of the Pareto Set Algorithm Based on anArbitrary Finite Set of Information �Quanta� // S
ienti�
 andTe
hni
al Information Pro
essing, 2014. V. 41, No 5. P. 1-5.



82 Multiple obje
tive de
ision makingMulti
riteria optimization problem withdynami
s∗F.P. Vasiliev, A.S. Antipin, and L.A. ArtemyevaLomonosov Mos
ow State University, Dorodni
yn Computing Centre ,Mos
ow, RussiaThe linear optimal 
ontrol problem with the �xed initial state andboundary 
ondition in the form of a �nite-dimensional multi
riteriaequilibrium problem is 
onsidered. This problem 
an be formulated inthe following way [1℄:it is needed to �nd the 
ontrol u ∈ U and a ve
tor λ ∈ Em
+ satisfyingthe 
onditions:

〈λ, f(x(t1;u))〉 → inf, (1)
〈µ− λ, f(x(t1;u))− λ〉 6 0, ∀ µ ∈ Em

+ , (2)where
ẋ(t) = D(t)x(t) +B(t)u(t) + g(t), t0 6 t 6 t1, x(t0) = x0, (3)Here f(x) = (f1(x), . . . , fm(x)), x ∈ En � is the given ve
tor-fun
tionwith 
onvex, di�erentiable 
oordinates f i(x), i = 1, . . . ,m, D(t),

B(t), g(t) � matri
es of 
orresponding sizes with pie
ewise 
ontinuouselements, t0, t1 � �xed time moments, x0 ∈ En � �xed initial state,
u = u(t) ∈ Lr

2[t0, t1] � 
ontrol, x = x(t;u) = (x1(t), . . . , xn(t)),
t0 6 t 6 t1 � system (3) traje
tory, 
orresponded to the 
ontol u(t).To �nd the solution of the problem (1)�(3) the extragradient method[2℄ is proposed and examined.Referen
es1. Antipin A.S., Khoroshilova E.V. Multi
riteria boundary valueproblem in dynami
s // Trudy Instituta Matematiki I Mekhaniki.2015. V. 21, � 3. P. 20�29. (In Russian)2. Vasiliev F.P. Optimization Methods. Mos
ow: MCCME, 2011.

∗This resear
h is supported by RFBR (proje
t 15-01-06045-à).



OR in e
onomi
s
Threshold strategiesin investor's behavior model∗V.I. Arkin and A.D. SlastnikovCentral E
onomi
s and Mathemati
s Institute, Mos
ow, Russia1. One of the fundamental problems of investing in real se
tor
on
erns the determination of optimal time for investment into a givenproje
t (see, e.g., 
lassi
al monograph [1℄).The proje
t is spe
i�ed by the pair (πt, t ≥ 0, I) where πt isthe revenue from the proje
t at time t, and I means the amount ofinvestment required to implement the proje
t. Pri
es on input andoutput produ
tion are assumed to be sto
hasti
, so πt is 
onsideredas a sto
hasti
 pro
ess, de�ned at a probability spa
e with �ltration

(Ω,F , {Ft, t ≥ 0},P).At any time an investor 
an either a

ept the proje
t and pro
eed withthe investment or delay the de
ision until he obtains new informationregarding its environment (pri
es of the produ
t and resour
es, demandet
.). The goal of an investor in this situation is to �nd, usingthe available information, an optimal time for investing the proje
t(investment timing problem), whi
h maximizes the net present valuefrom the proje
t:
E

(∫ ∞

τ

πse
−ρsds− Ie−ρτ

)1{τ<∞} → max
τ
, (1)where 1A is the indi
ator of A, and maximum is taken over all investmenttimes τ .

∗This resear
h is supported by Russian Foundation for Basi
 Resear
hes (proje
t15-06-03723).



84 OR in e
onomi
sThe majority of results on this problem (optimal investment strategy)has a threshold stru
ture: to invest when present value from the proje
tex
eeds the 
ertain level (threshold). In the heuristi
 level this isso for the 
ases of geometri
 Brownian motion, arithmeti
 Brownianmotion, mean-reverting pro
ess and some other (see [1℄). And the generalquestion arises: For what underlying pro
esses an optimal de
ision toan investment timing problem will have a threshold stru
ture? Somesu�
ient 
onditions in this dire
tion was obtained in [2℄.If we denote Xt = E

(∫ ∞

t

πse
−ρ(s−τ)ds

∣∣∣∣Ft

) � present value of theproje
t, implemented at the time t, then investment timing problem (1)
an be viewed as a spe
ial 
ase of optimal stopping problem:
Ex (Xτ − I) e−ρτ1{τ<∞} → max

τ
,where Ex means the expe
tation for the pro
ess Xt starting from theinitial state x, and the maximum is 
onsidered over all stopping times τ .Therefore, the question about a stru
ture of optimal de
ision may beaddressed to a general optimal stopping problem. Under what 
onditions(on both pro
ess and payo� fun
tion) an optimal stopping time willhave a threshold stru
ture? Some results in this dire
tion (in the formof ne
essary and su�
ient 
onditions) were obtained in [3,4℄ under someadditional assumptions on underlying pro
ess and/or payo�s.2. Let Xt be a di�usion pro
ess with values in the interval withboundary points l and r, where −∞ ≤ l < r ≤ +∞, open or 
losed (i.e.it may be (l, r), [l, r), (l, r], or [l, r]), whi
h is a solution to sto
hasti
di�erential equation:

dXt = a(Xt)dt+ σ(Xt)dwt, X0 = x,where wt is a standard Wiener pro
ess. Assume that a(·), σ(·) are
ontinuous fun
tions, and σ(x) > 0 for all x ∈ (l, r). Under theseassumptions the pro
essXt will be regular, i.e. starting from an arbitrarypoint x, the pro
ess rea
hes any point y in �nite time with positiveprobability.It is known that under the above assumptions there exist (uniqueup to 
onstant positive multipliers) in
reasing and de
reasing positivefun
tions ψ(x) and ϕ(x), whi
h are the fundamental solutions to theODE
a(x)f ′(x) +

1

2
σ2(x)f ′′(x) = ρf(p) (2)
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onomi
s 85on the interval (l, r).Let us de�ne a threshold stopping time τp = inf{t≥0 : Xt ≥ p} �the �rst time when the pro
ess Xt ex
eeds level p.Theorem 1. Threshold stopping time τp∗ , p∗∈(l, r), is optimal in theinvestment timing problem (1) for all x∈ (l, r) if and only if the following
onditions hold:
(p− I)ψ(p∗) ≤ (p∗ − I)ψ(p) for p < p∗; (3)

ψ(p∗) = (p∗ − I)ψ′(p∗);

a(p) ≤ ρ(p− I) for p > p∗,where ψ(x) is an in
reasing solution to ODE (2).3. As Theorem 1 shows, under 
ertain assumptions the optimalinvestment rule in problem (1) 
an be found over the 
lass of all thresholdstopping times {τp, p ∈ (l, r)}. For this 
lass the investment timingproblem (1) 
an be written as follows:
(p− I) Exe−ρτp → max

p∈(l,r)
. (4)The following result gives ne
essary and su�
ient 
onditions foroptimal threshold.Theorem 2. Threshold p∗ ∈ (l, r) is optimal in the problem (4) forall x ∈ (l, r), if and only if the 
onditions (3) and

(p− I)/ψ(p) does not in
rease for p ≥ p∗,hold, where ψ(p) is an in
reasing solution to ODE (2).Referen
es1. Dixit A., Pindy
k R.S. Investment under Un
ertainty. Prin
eton:Prin
eton University Press, 1994.2. Alvarez L.H.R. Reward fun
tionals, salvage values, and optimalstopping // Math. Methods Oper. Res. 2001. V. 54, P. 315�337.3. Arkin V.I. Threshold Strategies in Optimal Stopping Problem forOne-Dimensional Di�usion Pro
esses // Theory Probab. Appl.2015. V. 59. P. 311�319.4. Cro

e F., Morde
ki E. Expli
it solutions in one-sided optimalstopping problems for one-dimensional di�usions // Sto
hasti
s.2014. V. 86. P. 491�509.



86 OR in e
onomi
sThe uni�ed maximum prin
iple for optimale
onomi
 growth problems∗S.M. AseevSteklov Mathemati
al Institute, Mos
ow, RussiaLet G be a nonempty open 
onvex subset of Rn and let
f : [0,∞)×G× R

m → R
n and f0 : [0,∞)×G× R

m → R
1.The following problem (P ) arise in many �elds of e
onomi
s, inparti
ular in growth theory (see [1℄):

J(x(·), u(·)) =
∫ ∞

0

f0(t, x(t), u(t)) dt → max, (1)
ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (2)

u(t) ∈ U(t). (3)Here x(t) ∈ R
n and u(t) ∈ R

m are the values of the state ve
tor and the
ontrol ve
tor at time t ≥ 0, respe
tively, x0 ∈ G is the initial state and
U : [0,∞) ⇉ R

m is a multivalued mapping with nonempty values.Assume that for a.e. t ∈ [0,∞) the derivatives fx(t, x, u) and
f0
x(t, x, u) exist for all (x, u) ∈ G × R

m, and the fun
tions f(·, ·, ·),
f0(·, ·, ·), fx(·, ·, ·), and f0

x(·, ·, ·) are Lebesgue-Borel (LB) measurable in
(t, u) for every x ∈ G, and 
ontinuous in x for almost every t ∈ [0,∞)and every u ∈ R

m. The multivalued mapping U(·) is also assumed to be
LB-measurable, i.e. the set grU(·) = {(t, u) ∈ [0,∞) × R

m : u ∈ U(t)}is a LB-measurable subset in [0,∞)× R
m.By de�nition, (x(·), u(·)) is an admissible pair in problem (P ) if u(·)is a Lebesgue measurable fun
tion satisfying (3) for all t ≥ 0, x(·) isthe 
orresponding to u(·) lo
ally absolutely 
ontinuous solution of theCau
hy problem (2) on [0,∞) in G, and the fun
tion t 7→ f0(t, x(t), u(t))is lo
ally integrable on [0,∞). Thus, for an arbitrary admissible pair

(x(·), u(·)) and any T > 0 the integral
JT (x(·), u(·)) :=

∫ T

0

f0(t, x(t), u(t)) dtis well de�ned. An admissible pair (x∗(·), u∗(·)) is optimal in problem
(P ) if the 
orresponding improper integral in (1) 
onverges (to a �nite

∗This resear
h is supported by the Russian S
ien
e Foundation under grant 14-50-00005.
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onomi
s 87number) and the following inequality holds for any other admissible pair
(x(·), u(·)):

J(x∗(·), u∗(·)) ≥ lim sup
T→∞

∫ T

0

f0(t, x(t), u(t)) dt.Following [3], we will impose the following 
onditions on admissiblepairs (x∗(·), u∗(·)) in problem (P ).
(A1) There exists a 
ontinuous fun
tion γ : [0,∞) 7→ (0,∞) and alo
ally integrable fun
tion ϕ : [0,∞) 7→ R

1 su
h that {x : ‖x − x∗(t)‖ ≤
γ(t)} ⊂ G for all t ∈ [0,∞) and

max
{x : ‖x−x∗(t)‖≤γ(t)}

{
‖fx(t, x, u∗(t))‖ + ‖f0

x(t, x, u∗(t))‖
} a.e.

≤ ϕ(t).

(A2) There exists a number β > 0 and a nonnegative integrablefun
tion λ : [0,∞) 7→ R
1 su
h that for all ζ ∈ G, satisfying the inequality

‖ζ − x0‖ < β, the initial value problem (2) with u(·) = u∗(·) and theinitial 
ondition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·)on [0,∞) in G and
max

x∈[x(ζ;t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), x(ζ; t) − x∗(t)〉

∣∣∣
a.e.
≤ ‖ζ − x0‖λ(t).If (x∗(·), u∗(·)) is an admissible pair satisfying 
onditions (A1) and

(A2) then the fundamental matrix solution Z∗(·) of the linear system
ż(t) = −fx(t, x∗(t), u∗(t)) z(t), t ≥ 0,with initial 
ondition Z∗(0) = I where I is the identity matrix is wellde�ned on [0,∞).Let (x∗(·), u∗(·)) be an admissible pair that satis�es (A1) and (A2),and su
h that the fun
tional (1) 
onverges. Then without loss ofgenerality one 
an assume that there is a neighborhood Ω ⊂ [0,∞)×Gof the set grx∗(·) = {(t, x∗(t)) : t ≥ 0}, su
h that for all (t, ζ) ∈ Ω thereis a solution x(ζ, t; ·) of the Cau
hy problem
ẋ(s) = f(s, x(s), u∗(s)), x(t) = ζ,on [0,∞) in G, and for all (t, ζ) ∈ Ω the integral
W (t, ζ) =

∫ ∞

t

f0(s, x(ζ, t; s), u∗(s)) ds
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onomi
s
onverges. Noti
e, that the meaning ofW (t, ζ) is the 
onditional value ofthe 
apital sto
k ζ at time t under a given investment plan u∗(·) (see [2℄).De�ne the normal form Hamilton-Pontryagin fun
tion H : [0,∞) ×
G× R

m × R
n → R

1 for problem (P ) in the usual way:
H(t, x, u, ψ) = f0(t, x, u)+〈f(t, x, u), ψ〉, t ≥ 0, x ∈ G, u ∈ R

m, ψ ∈ R
n.The following result uni�es the normal form version of the Pontryaginmaximum prin
iple for problem (P ) developed in [3℄ with the Hamilton-Ja
obi-Bellman equation without any a priory regularity assumptions onthe value fun
tion (see [2℄ for details).Theorem 1. Let (x∗(·), u∗(·)) is an optimal admissible pair inproblem (P ) that satis�es 
onditions (A1) and (A2). Then(i) the partial (Fré
het) derivative Wx(t, x∗(t)) exists for all t ≥ 0,and

Wx(t, x∗(t)) = Z∗(t)

∫ ∞

t

Z−1
∗ (s)f0

x(s, x∗(s), u∗(s)) ds, t ≥ 0;(ii) the partial derivative Wt(t, x∗(t)) exists for a.e. t ≥ 0, and
Wt(t, x∗(t))+

+ sup
u∈U(t)

{
〈Wx(t, x∗(t)), f(t, x∗(t), u)〉+ f0(t, x∗(t), u)

} a.e.
= 0;(iii) the ve
tor fun
tion t 7→ ψ(t) = Wx(t, x∗(t)), t ≥ 0, is lo
allyabsolutely 
ontinuous and satis�es the 
ore relations of the normalform maximum prin
iple for problem (P ):

ψ̇(t)
a.e.
= −Hx(t, x∗(t), u∗(t), ψ(t)),

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= sup

u∈U(t)

H(t, x∗(t), u, ψ(t)).Referen
es1. A
emoglu D. Introdu
tion to modern e
onomi
 growth, Prin
etonN.J.: Prin
eton Univ. Press, 2008.2. Aseev S. M. Adjoint variables and intertemporal pri
es in in�nite-horizon optimal 
ontrol problems // Pro
eedings of the SteklovInstitute of Mathemati
s, 2015. V. 290. P. 223�237.
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onomi
s 893. Aseev S. M., Veliov V. M. Maximum prin
iple for in�nite-horizonoptimal 
ontrol problems under weak regularity assumptions //Pro
eedings of the Steklov Institute of Mathemati
s, 2015. V. 291.Suppl. 1. P. S22�S39.Fresh look at fair division problems: 
asewith a massive dis
rete 
omponent∗M.L. BlankRussian A
ademy of S
i. Inst. for Information TransmissionProblems,and National Resear
h University Higher S
hool ofE
onomi
s, Mos
ow, RussiaOne of very basi
 problems of mathemati
al e
onomi
s is the questionof fair distribution of various types of resour
es between agents withdi�erent subje
tive estimates of the resour
es. Typi
al examples are 
ake-
utting, 
hore-division or an apartment rent-partitioning. In the mostgeneral form the fair division means that in the result of the divisionthe share of ea
h agent is �not worse� than others. However, dependingon the exa
t mathemati
al formalization of the word �worse�, the results(and even the existen
e of the solution) might be very di�erent. There isa vast mathemati
al literature dedi
ated to these matters, see e.g. [1�7℄and further referen
es in these publi
ations.We introdu
e the notions of weak and strong solutions to the problemof fair division, generalizing the notions of �proportional� and �envy-free�notions used in the e
onomi
s literature, and apply them for the analysisof the division of a resour
e having a massive dis
rete 
omponent, e.g.pre
ious stones. Due to the 
omplexity of the latter problem no approa
hto its solution exists in the literature.Indeed, if the resour
e under division 
onsists only of a number ofstones of di�erent pri
es there is no way to make a fair division. Thesituation 
hanges if additionally there is a 
ontinuous 
omponent, e.g.some amount of money. Obviously this amount 
annot be too small inorder to make a 
hange. We give ne
essary and su�
ient 
onditions forthe existen
e of weak and strong solutions for the fair division problemin terms of individual subje
tive estimates of the stones pri
es made byea
h of the agents and the total amount of money. The proof of thisresult is based on an expli
it �nite 
onstru
tive algorithm of �nding thesolutions.
∗This resear
h is supported by RFBR and RNF grants.



90 OR in e
onomi
sAn appli
ation of above mentioned ideas for the apartment rent-partitioning problem may be found in [8℄.Referen
es1. Steinhaus H. The problem of fair division // E
onometri
a, 16(1)(1948), P. 101�104.2. Brams S.J., Mi
hael A.J.,Klamler C. Better Ways to Cut a Cake// Noti
es of the Ameri
an Mathemati
al So
iety 53 (11) (2006),P. 1314�1321.3. Moulin H. Fair division and 
olle
tive welfare. Cambridge: MITPress, 2003.4. Brams S.J. Mathemati
s and demo
ra
y: Designing better votingand fair division pro
edures. Prin
eton, N.J.: Prin
eton UniversityPress, 2008.5. Barbanel J., Brams S.J., and Stromquist W., Cutting a pie is nota pie
e of 
ake // Ameri
an Mathemati
al Monthly 116 (2009),P. 496�514.6. Su F.E. Rental Harmony: Sperner's Lemma in Fair Division //Ameri
an Mathemati
al Monthly 106:10 (1999), P. 930�942.7. Stromquist W. Envy free 
ake divisions 
annot be found by �niteproto
ols // Ele
troni
 Journal of Combinatori
s 15(1) (2008),R11.8. Blank M. Problem of a fair division of a hybrid resour
e //Problems of Information Transmission, (to appear).The asymptoti
 solution of one problem ofe
onomi
 dynami
s with turnpike propertiesof optimal traje
tories∗Yu.E. Danik and M.G. DmitrievInstitute of system analysis of Russian A
ademy of S
ien
es, NationalResear
h University �Higher S
hool of E
onomi
s�, Mos
ow, RussiaIn this work the algorithm for the 
onstru
tion of approximatedoptimal solution of problems of e
onomi
 dynami
s where traje
torieshave turnpike 
hara
ter is proposed. At �rst the similar approa
h wasdes
ribed in [1℄. This approa
h is based on the singular perturbationstheory and allows to �nd zero uniform optimal 
ontrol asymptoti
 appro-ximations that lead to balan
ed growth traje
tories for the e
onomi

∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h (Proje
tNo. 15�01-06192 and proje
t No. 15-29-06053).
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onomi
s 91growth model whi
h 
ombines the properties of dynami
al models ofLeontief and Neumann. Let us 
onsider the dis
rete time dynami
 modelsof the e
onomi
 system [2℄ where the time step µ is a small parameter.The dynami
 Leontief model of a multise
tor e
onomy has the form
x(t) = Ax(t) +B[x(t+ µ)− x(t)] + d(t), x(0) = x0,
t ∈ Tµ = {t : t = kµ, k = 0, 1, ..., (N − 1), 0 < µ << 1} (1)The von Neumann growth model may be presented as follows
x(t+ µ) = x(t) + (B∗ −A∗)u(t), x(0) = x0, t ∈ Tµ, (2)If we 
ombine models (1) and (2) and take the terminal 
riterion weget the following modi�ed singular perturbed problem
Pµ : J(u) = (x(T )− xfix)

TF (x(T )− xfix) → min
u

(3)
x(t+ µ) = Ax(t) + (E +B)(B∗ −A∗)u(t) + d(t), x(0) = x0 (4)

A∗u(t) ≤ x(t), u(t) ≥ 0, x(t) ≥ 0 (5)where x(t) � n-dimensional ve
tor of output levels, F = FT > 0, An×nis the Leontief input-output matrix, Bn×n is the matrix of 
apital 
oe�-
ients, ui(t) ≥ 0, u(t) = (u1(t), ..., ur(t)) � produ
tion intensities ve
torduring period [t, t+µ], t ∈ Tµ, j = 1, r, A∗m×r and B∗m×r � nonnega-tive input and output matri
es for the unit of produ
tion intensities,respe
tively, (B∗ −A∗)u(t) � net output ve
tor at the end of the period
[t, t + µ], d(t) = βtd(0) � ve
tor of �nal demand, β ≥ 0 � the balan
edgrowth rate of 
onsumption. System (4) 
an be interpreted as a dynami
balan
e equation, where the total output at the beginning of the nextperiod must equal the sum of the 
onsumption volume d(t), the ne
essaryinvestments in funds B(B∗ − A∗)u(t) required for the produ
tion of asele
ted amount of net output (B∗ −A∗)u(t) and the 
osts Ax(t) of thete
hnologi
al pro
esses fun
tioning. The 
onstraint (5) is taken from thevon Neumann model. The 
riterion (3) is used to sele
t admissible pairs
(x(t), u(t)) that will ensure the best approximation to a 
ertain spe
i�edtarget (xfix) at the �nal time.The proposed algorithm for the 
onstru
tion of zero uniform optimal
ontrol asymptoti
 approximations is based on the dire
t s
heme of theboundary fun
tions method [3,4℄, whi
h is used to �nd the asymptoti
approximation to the solution of problem (3)-(5) as the sum of thethree series z(t, µ) = z̄(t, µ) + Πz(τ0 , µ) + Qz(τ1 , µ), z =

(
x
u

).
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onomi
sThe series z̄(t, µ) is the regular series with 
oe�
ients depending on tand Πz(τ0 , µ), Qz(τ1 , µ) - boundary layer series with the 
oe�
ientsdepending on τ0 = t
µ , τ1 = t−T

µ . It is assumed that terms of theboundary layer series have exponential estimates.The steps of the algorithm are:1) Substitute the power series expansion in the left and right handsides of (3)-(5) and then equate the terms with the zero power of µseparately for the terms with t, τ0, τ1 to get three de
omposition prob-lems P0, Π0� , Q0P for the identi�
ation of the zero terms of the 
ontroland state approximations.2) From problem P0 �nd the turnpike part of the traje
tory x̄0(t) =
(E −A)−1d(t) and the 
ontrol fun
tion ū0(t) = c(t)uA, where uA is theeigenve
tor of matrix (B∗ − A∗) 
orresponding to the zero eigenvalue,and c(t) is an unknown s
alar fun
tion. The following 
onditions mustbe satis�ed A∗ū0(t) ≤ x̄0(t), ū0(t) ≥ 0, x̄0(t) ≥ 0 .3) Near the initial point we get the problem Π0� as a system ofinequalities for Π0u(τ0) and Π0x(τ0): A∗(c(t)uA + Π0u(τ0)) ≤ (E −
A)−1d(t) + Π0x(τ0), c(t)uA ≥ 0, (E − A)−1d(t) + Π0x(τ0) ≥ 0,
c(t)uA + Π0u(τ0) ≥ 0, Π0x(τ0) = Aτ0Π0x(0) +

∑τ0−1
s=0 Aτ0−s−1(E +

B)(B∗ −A∗)Π0u(s), Π0x(0) = x0 − (E −A)−1d(0).4) Near the �nal point we have the next optimal 
ontrol problem
J(u) = (x̄0(T ) + Q0x(0) − xfix)

TF (x̄0(T ) + Q0x(0) − xfix) →
min

Q0u(τ1),Q0x(0)
A∗(c(t)uA+Q0u(τ1)) ≤ (E−A)−1d(t)+Q0x(τ1), c(t)uA+

Q0u(τ1) ≥ 0, (E −A)−1d(t) +Q0x(τ1) ≥ 0,
Q0x(τ1) = Aτ1(xfix − x̄0(1))−

∑−1
s=τ1

Aτ1−s−1(E+B)(B∗ −A∗)Q0u(s).It should be noted that due to the nature of the 
riterion (3), problems
P0 and Π0P do not have a 
riterion, moreover, not for all elements of thesolution of problems P0, Π0P and Q0P a single value 
an be obtained.5) Finally, as all of the des
ribed de
omposition problems depend onone unknown dis
rete fun
tion c(t), the following problem is solved
J(u, t, µ, c(t)) = (x(T, u0(t, µ, c(t)))−xfix)TF (x(T, u0(t, µ, c(t)))−xfix)
→ min

u0(t,µ,c(t))

ū0(t, c(t)) + Π0u(c(t),
t
µ ) +Q0u(c(t),

t−T
µ ) ≥ 0, c(t) ≥ 0, ∀t,

x̄0(t) + Π0x(Π0u,
t
µ ) + Q0x(Q0u,

t−T
µ ) ≥ 0, A∗u0(t, µ, c(t)) ≤ x̄0(t) +

Π0x(Π0u,
t
µ ) +Q0x(Q0u,

t−T
µ ).For numeri
al 
al
ulations a small dis
repan
y fun
tional (regularizator)
an be additionally introdu
ed in the 
riterion (3) to �nd the admissible
ontrols.
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s 936) If there exist c(t) and Π0u(c(t), τ0), Q0u(c(t), τ1) su
h that theproblems 
onstraints are satis�ed, we get optimal traje
tory approxi-mation x(t, u0(t, µ, c(t))) from (4).Thus, for the problem approximate solution the initial 
ontrolproblem (3)-(5) is redu
ed to the 
onstru
tion of the zero uniformoptimal 
ontrol asymptoti
 approximation. For su�
iently small µ theproposed algorithm gives a good approximation of the solution andrequires less 
al
ulations in 
omparison with the dire
t solution ofproblem (3)-(5) as a dis
rete optimal 
ontrol problem.Referen
es1. Danik Yu.E., Dmitriev M.G. Turnpike traje
tories and singularperturbations // Trudy Instituta sistemnogo analiza RAN. 2012.V. 65, � 1. P. 60�67. (in Russian)2. Al'sevi
h V.V. Vvedenie v matemati
heskuju jekonomiku.Konstruktivnaja teorija: U
hebnoe posobie. Mos
ow: Knizhnyjdom ¾LIBROKOM¿, 2009. (in Russian)3. Dmitriev M.G. Singular-perturbation theory and some optimal-
ontrol problems // Di�erential equations. 1985. V. 21, � 10.P. 1132�1136.4. Vasil'eva A.B., Dmitriev M.G. Singular perturbations in optimal
ontrol problems // Journal of Soviet Mathemati
s. 1986. V. 34,� 3. P. 1579�1629.Deterministi
 queuing system∗V.V. Karelin, V.M. Bure, and A.N. El�movSaint Petersburg State University, Saint Petersburg, RUSSIAConsider a deterministi
 queuing system whi
h 
ontains a singleserving unit with three streams of appli
ations. Speeds of re
eipt ofappli
ations as well as speeds of handling of appli
ations by a servi
edevi
e depend on the quantity of the queue. At any moment the server
an handle only one appli
ation. Servi
e systems of su
h type haveproliferated in re
ent years. For example, in various servi
e 
enters anuser of a terminal devi
e 
hooses the queue number in a

ordan
e withthe type of his appli
ation, then obtains a number in the 
hosen queuefor servi
e. The servi
e 
omes with using a multifun
tional operatingdevi
e, whi
h swit
hes from one queue to another during an operation
∗This resear
h is supported by the Saint Petersburg State University grant9.38.205.2014.
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onomi
sand wherein moments of swit
hing are 
hosen by the servi
e devi
e. Theformulated problem is similar to the well-known problem of the 
ontrol oftra�
 lights at an isolated interse
tion [1℄ � [4℄, but signi�
antly di�ersfrom it by the nature of the restri
tions, in parti
ular, it is generallyassumed that the time of servi
e in the problem of the interse
tion isequal to zero. Under the problem of managing su
h a system it is possibleto understand the 
hoi
e of the swit
hing pro
edure of a servi
ing devi
ewith one queue to another, guaranteeing that there is no unlimitedgrowth of the queue on ea
h streams of appli
ations. A similar problemwith two streams was 
onsidered earlier in [4℄.Introdu
e the following notation: Let q1(t), q2(t), q3(t) be queuelengths waiting for servi
e of a multifun
tional devi
e for the �rst, se
ondand third streams at the time t respe
tively. Let ai(t) è di(t) be speedsof re
eipt and ful�llment orders for the i-th line, respe
tively, where
i = 1, 2, 3. Let gi be the duration of 
ontinuous servi
e of requests fromthe queue with the number i, gi > 0 (i = 1, 2, 3)Let's assume that:1) ai(t) = ai ≥ 0 is a known 
onstant;2) qi(t) is a non-negative integer (the number of requests in the queuefor servi
e �ow i at time t).3)
di(t) =





0, if the devi
e supports an appli
ation fromthe queue j 6= i ;
di, if the devi
e supports an appli
ation from the queue i ;4) di > ai, note that in the framework of our problem these quantitiestake 
onstant values.5) In the initial moment of time the queue is absent, i.e. qi(0) = 0, i =

1, 2, 3.6) Let the duration of 
ontinuous servi
e requests from the samequeue put the same for ea
h of the queues.De�nition 1. The triple (g1, g2, g3) is 
alled a 
y
le, where gi islengths of 
ontinuous servi
e requests from the queue with the number i(i = 1, 2, 3)Let us 
onsider three sequen
es of time points. The �rst sequen
e:
τ
(1)
1 = g1, τ

(1)
2 = g1+g2+g3+g1, . . . , τ

(1)
k+1 = (g1+g2+g3)k+g1, . . . .This sequen
e of time points represents the points of start of servi
erequests from the queue with the number two or the time of terminationof the implementation of the requirements of the �rst stream.
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ond sequen
e:
τ
(2)
1 = g1 + g2, τ

(2)
2 = g1 + g2 + g3 + g1 + g2, . . . ,

τ
(2)
k+1 = (g1 + g2 + g3)k + g1 + g2, . . . .The se
ond sequen
e of time points represents the points of start ofservi
e requests from the queue with the number three, or the time oftermination of the implementation of the requirements of the se
ondstream.The third sequen
e:

τ
(3)
1 = g1 + g2 + g3, τ

(3)
2 = g1 + g2 + g3 + g1 + g2 + g3, . . . ,

τ
(3)
k+1 = (g1 + g2 + g3)(k + 1), . . . .The third sequen
e of time points represents points of start of servi
erequests from the queue with the number one, or the time of terminationof the implementation of the requirements of the third stream. Let'sintrodu
e a notation for the initial time: τ (0)0 = 0 is the start time of theMFD (a re
eiption of �rst request for servi
e).De�nition 2. Su
h regime of servi
e appli
ations in whi
h there willbe a

umulation of the queue i.e., the following 
onditions

q1

(
τ
(1)
k+1

)
= 0, q2

(
τ
(2)
k+1

)
= 0, q3

(
τ
(3)
k+1

)
= 0 ∀k = 0, 1, 2, . . . .hold is 
alled a stationary regime.Now we �nd out 
onditions when the 
y
le (g1, g2, g3) will lead to thestationary regime:Theorem 1. A 
y
le (g1, g2, g3) generates a stationary regime if andonly if when the following inequalities

d1 − a1
a1

≥ g2 + g3
g1

;
d2 − a2
a2

≥ g1 + g3
g2

;
d3 − a3
a3

≥ g1 + g2
g3hold.This theorem is proved similarly to the �rst Theorem from [4℄. Asopposed to Theorem from [4℄ in this theorem the question of the existen
eof a stationary regime for a servi
e system with 
hara
teristi
s of di, ai(i = 1, 2, 3, . . . ) is not obvious. The following theorem gives an answerof this question.
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onomi
sTheorem 2. Let q1(0) = q2(0) = q3(0) = 0. The 
y
le (g1, g2, g3)generating a stationary regime exists if and only if when the following
onditions
d1 − a1
a1

>
a2

d2 − a2
;
d3 − a3
a3

>
a2

d2 − a2
;

d3 − a3
a3

>
a1

d1 − a1
;
d3
a3

≥ d1d2
d1d2 − d1a2 − d2a1hold. Referen
es1. Aboudolas K., Papageorgiou M., Kosmatopoulos E., Store-and-forward based methods for the signal 
ontrol problem in large-s
ale
ongested urban road networks // Transportation Resear
h PartC: Emerging Te
hnologies 2008. V. 17, � 2. P. 163�1742. Diakaki C., Papageorgiou M., Aboudolas K. A multivariableregulator approa
h to tra�
-responsive networkwide signal
ontrol. // Control Engineering Pra
ti
e. 2002. � 10. P. 183�195.3. Gazis D., Potts R. The oversaturated interse
tion // Pro
eedingsof the International Symposium on the Theory of Tra�
 Flow.London: Elsevier. 1963. P. 221�227.4. Haddad J., Mahalel D., Ioslovi
h I., Gutman P.-O. Constrainedoptimal steady-state 
ontrol for isolated tra�
 interse
tions //Control Theory Te
h. 2014. V. 12, � 1. P. 84�94.Superhedging of Ameri
an options in anin
omplete {1, S̄}-markets (dis
rete time,�nal horizon)V. Khametov and E. ShelemekhHSE University, CEMI RAS, Mos
ow, RussiaThere are many works devoted to the problem of Ameri
an option'spri
ing in in
omplete markets. For example, arti
les by Yu.M. Kabanov,V. I. Arkin, D.O. Kramkov, I.M. Sonin, A.N. Shiryaev, H. F�ollmer,A. S
hied, W. S
ha
hermayer, F. Delbaen, R. Merton and other authors.There in the arti
les they have found 
onditions, when a solution existsfor the problem in dynami
 and stati
 formulations. In the 
ase ofdynami
 formulation this 
onditions are based on existen
e of uniformDoob de
omposition (works by A.N. Shiryaev, H. F�ollmer, A. S
hied).In stati
 
ase 
onditions of solution's existen
e for dire
t and "dual"
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ha
hermayer, F. Delbaen). Butno methods to 
onstru
t portfolio were proposed. This presentationdi�ers from other works be
ause we use minimax approa
h to solve theproblem of Ameri
an option pri
ing in an in
omplete market in dynami
formulation. This approa
h enabled us to give a 
onstru
tive des
riptionof superhedging portfolio and optimal exer
ise moment.1. Formulation of the problem. Suppose, there is a sto
hasti
basis (Ω,F , (Fn)n≥0,P) and d-dimensional (d < ∞) adapted randomsequen
e {Sn}n≥0 on it. A market 
onsisting of one risk-free asset with
onstant prise 1 and of d risky assets with prises evolving as {Sn}n≥0is 
alled {1, S̄}-market [1℄. Let us denote: 1) Sn
0 , (S0, ..., Sn), n ≥ 0;2) N ∈ N

+ is a horizon; 3) RN , {Q : Q ∼ P}; 4) MN , {Q :
EQ[Sn+1|Fn] = Sn, n ≥ 0}, where EQ[·|Fn] is the 
onditional expe
tationwith respe
t to measure Q and σ-algebra Fn. It is well known [1℄, thatmeasure Q ∈ RN spe
i�es market and {1, S̄}-market is in
omplete if andonly if RN ∩MN 6= ∅. We suppose that RN ∩MN 6= ∅ and there is no"fri
tion" in {1, S̄}-market.Let T N

n be a set of stopping moments τ taking values in the set
{n, ..., N} and {fn}0≤n≤N is an adapted sequen
e of bounded randomvariables. Ameri
an option is a 
ontra
t between the Seller and theBuyer: 1) the Seller sales the right (the option) to buy from him orto sell him risky assets at any moment τ (
hosen by the Buyer) at�xed 
onditions {fn}0≤n≤N (dynami
 payo� of Ameri
an option); 2) theBuyer exer
ises option, i.e. the Seller buys or sells risky assets a

ordingthe 
ontra
t. To 
on
lude the 
ontra
t the Buyer pays the Seller fairvalue of the option. The Seller forms a portfolio of one risk-free and drisky assets π , {β, γ} [1℄. The set 
onsisting of all γN1 , (γ1, ..., γN) willbe denoted by DN

1 . The restri
tion of the set DN
1 to the set {n, ..., N}we denote by DN

n .We treat the problem of Ameri
an option pri
ing in an in
omplete
{1, S̄}-market [1℄ as a sto
hasti
 game between the Seller and the Buyer.The Seller has portfolios π as his strategies. Exer
ise moments τ ∈ T N

nare Buyer's strategies. Suppose, that Seller's risk fun
tion is exponentialand depends on de�
it of his or her portfolio's 
apital. So exponentialexpe
ted risk of the Seller at a moment n ∈ {0, ..., N} with respe
t toany Q ∈ RN is represented by the following formula




I(Q,τ),γN
n+1(n, Sn

0 ) , EQ

[
exp

{
f(n∨τ)∧N −

τ∧N∑

i=n+1

(γi,△Si)

}
|Fn

]
,

I(Q,τ)(N,SN
0 ) , exp{fN}.



98 OR in e
onomi
sLet D̂N
n ,

{
γNn ∈ DN

n : ess sup
τ∈T N

n ,Q∈RN

I(Q,τ),γN
n (n− 1, Sn−1

0 ) <∞ P-a.s.}.Obviously, D̂n 6= ∅, 1 ≤ n ≤ N .Suppose, that neither the Seller, nor the Buyer knows risk assetspri
es' distribution Q ∈ RN . The Seller have to ful�ll his obligationa

ording to an option for sure. Also we suppose, that the Seller isrational, i.e.: 1) he or she assumes, that distribution of risk assets' pri
esand exer
ise moment (
hosen by the Buyer) will maximaze his or herexpe
ted risk; 2) he or she managers portfolio to minimazes own expe
tedrisk. Thus, the Seller have to solve the following minimax problem:
I(Q,τ),γN

1 (0, S0) → ess inf
γN
1 ∈D̂N

1

ess sup
τ∈T N

0

ess sup
Q∈RN

.2. Important results.Let vNn , ess inf
γN
n+1∈D̂N

n+1

ess sup
τ∈T N

n

ess sup
Q∈RN

I(Q,τ),γN
n+1(n, Sn

0 ) be the upperguaranteed value of Seller's expe
ted risk at a moment n ∈ {0, ..., N}.Theorem 1. Suppose {Sn}n≥0 is a d-dimensional adapted randomsequen
e, {fn}0≤n≤N is an adapted random sequen
e of bounded randomvariables and RN , {Q : Q ∼ P}. Then the sequen
e {vNn }0≤n≤Nsatis�es the following re
urrent relation P-a.s.




vNn = max

{
efn ; ess inf

γn+1∈D̂n+1

ess sup
Q∈RN

EQ

[
vNn+1e

−(γn+1,△Sn+1)|Fn

]}
,

vNn |n=N = efN .Theorem 2. Suppose 
onditions of Theorem 1 are satis�ed and RN∩
MN 6= ∅. Than for any n ∈ {1, ..., N} there is γ∗n ∈ D̂n su
h, that P-a.s.

ess inf
γn∈D̂n

ess sup
Q∈RN

EQ

[
vNn e

−(γn,△Sn)|Fn−1

]
=

= ess sup
Q∈RN

EQ

[
vNn e

−(γ∗n,△Sn)|Fn−1

]
.

(1)Remark. Suppose for any n ∈ {1, ..., N} there is γ∗n ∈ D̂n su
h,that (1) is true P-a.s. As set T N
0 is �nite, there always exists τ∗ ∈ T N

0 :
ess sup
τ∈T N

0

ess sup
Q∈RN

I(Q,τ),γ∗N
1 (0, S0) = ess sup

Q∈RN

I(Q,τ∗),γ∗N
1 (0, S0).Theorem 3. Suppose 
onditions of Theorem 1 are satis�ed and thereare (γ∗N1 , τ∗

)
∈ D̂N

1 × T N
0 su
h, that P-a.s.

ess inf
γN
1 ∈D̂N

1

ess sup
τ∈T N

0

ess sup
Q∈RN

I(Q,τ),γN
1 (0, S0) = ess sup

Q∈RN

I(Q,τ∗),γ∗N
1 (0, S0). (2)
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s 99Then there exists a non-de
reasing sequen
e {C∗
n}0≤n≤N su
h, that

fτ∗∧N = ln vN0 +
τ∗∧N∑
i=1

(γ∗i ,△Si)− C∗
τ∗∧N , C∗

0 = 0 P-a.s.Obviously, for any n ∈ {1, ..., N} there is β∗
n: △β∗

n , −(Sn−1,△γ∗n),
β∗
0 = ln vN0 . A pair {π∗, C∗} is 
alled superhedging portfolio [1℄. In [2℄ itis proved that 
apital of the superhedging portfolio {π∗, C∗} is minimalamong 
apitals of all other superhedging portfolios. This justi�es our
hoi
e of exponential utility.2.4. Corollary 4. Suppose a stopping moment τ∗ ∈ T N

0 satis�es (2).Then it is possible to represent τ∗ ∈ T N
0 by the formula:

τ∗ = min
{
0 ≤ n ≤ N : vNn = exp{fn}

}
.Referen
es1. F�ollmer H., S
hied A. Sto
hasti
 Finan
e. An Introdu
tion inDis
rete Time. Berlin: Walter de Gruyter, 2004.2. Khametov V.M., Shelemekh E.A. Superhedging of Ameri
anoptions on an in
omplete market with dis
rete time and �nitehorizon // Automation and Remote Control. 2015. 76:9. P. 1616�1634.Analysis of 2015 Chinese sto
k market 
rashby means of generalized nonparametri
method∗N.I. Klemashev1 and A.A. Shananin1, 2, 3, 4

1Lomonosov Mos
ow State University
2Mos
ow Institute of Physi
s and Te
hnology

3Federal Resear
h Center �Computer S
ien
e and Control� of RAS
4People's Friendship University of Russia, Mos
ow, RussiaThe generalized nonparametri
 method [1�3℄ is based on the resultsof revealed preferen
e theory whi
h is devoted to solving the inverseproblem of the demand analysis. The dire
t problem of the demandanalysis is: given a utility fun
tion F , a pri
e ve
tor P and a level ofexpenditure I to �nd the optimal demand ve
tor by solving the followingproblem: max

X>0
F (X), 〈P,X〉 6 I.

∗This resear
h is supported by RFBR grant � 14-07-00075 and by RSF grant� 16-11-10246.



100 OR in e
onomi
sThe inverse problem (for a �nite number of observations) is: givena set {(P t, Xt)}Tt=1 of observed pri
es P t and 
onsumption ve
tors
Xt (we 
all this set a trade statisti
s) to �nd a utility fun
tion Fwhi
h rationalizes the observed data, that is, ea
h Xt solves max

X>0
F (X),

〈P t, X〉 6 〈P t, Xt〉.When solving the inverse problem one put several requirements on theutility fun
tion F . In the nonparametri
 method for market analysis andits generalized 
ounterpart we put an additional requirement of positive-homogeneity of utility fun
tion (see [2℄, [3℄ for more details).The inverse problem not always has a solution. When it does not, weintrodu
e the irrationality index, whi
h shows the degree violation of theexisten
e 
onditions and 
ome to the generalized nonparametri
 methodfor market analysis. The method allows one to 
ompute e
onomi
 indi
esand predi
t demand for an arbitrary pri
e ve
tors.The irrationality index [4℄ may be de�ned as the optimal value ω∗of the goal fun
tion in the following linear program: minω, ω + λt −
λτ > ctτ , (t, τ = 1, . . . , T ), ω > 0, where ctτ = log

(
〈P τ ,Xτ 〉
〈P t,Xτ〉

)
. If theirrationality index is zero, then the inverse problem has a solution.The generalized nonparametri
 method allows one to makepredi
tions about 
onsumption at an arbitrary pri
e ve
tor. Supposewe have a trade statisti
s {(P t, Xt)}Tt=1 with irrationality index ω anda pri
e ve
tor P . Then the set of predi
ted volumes K(P ) is de�ned asthe set of all nonnegative X su
h that the joint trade statisti
s

{(P t, Xt)}Tt=1 ∪ {(P,X)}has the irrationality index ω.One may show (see [5℄) that if eω > 1, then
K(P ) = {X > 0 | γτ (P )〈P τ , X〉 > 〈P,X〉, τ = 1, T},where

γτ (P ) = min
t∈{1,...,T}

{
ω2

C∗
tτ

〈P,Xt〉
〈P t, Xt〉

}
,and

C∗
tτ = max{ω−k−1Ctt1Ct1t2 . . . Ctk−1tkCtkτ |

{t1, . . . , tk} ⊂ {1, . . . , T }, k > 0},
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s 101The values C∗
tτ may be e�e
tively 
omputed in O(T 3) operations bymeans of Floyd-Warshall algorithm.We present a new methodology for analyzing sto
k markets based ongeneralized nonparametri
 method. We use a linear program from [6℄

T∑

t=1

T∑

τ=1
τ 6=t

ωtτ → min (1)
ωtτ + λt − λτ > ctτ − ωmin, (t, τ = 1, T ), (2)
ωtτ > 0. (t, τ = 1, T ), (3)Here ωmin > 0 is the allowed level of irrationality.The dual problem is
T∑

t=1

T∑

τ=1
τ 6=t

(ctτ − ωmin)xtτ → max (4)
0 6 xtτ 6 1, (t, τ = 1, T ) (5)
T∑

τ=1

xtτ =

T∑

τ=1

xτt. (t = 1, T ) (6)If {x∗tτ | t, τ = 1, . . . , T }, solve (4)�(6), then x∗tτ ∈ {0, 1}. Thisproperty allows one to visualize the solution of the dual problem asa dire
ted graph.The solution of ea
h of the problems (1)�(3) and (4)�(6) allows oneto sele
t the most irrational pairs of periods. This redu
es markedly thenumber of periods an analyst needs to study 
arefully when analyzingsome event on the �nan
ial markets. Then we use nonparametri
 predi-
tions to analyze parti
ular sto
ks that might 
ause the 
rash.In this talk we present our results of applying this new methodologyfor analyzing the 
rash of Chinese sto
k market in 2015.Referen
es1. Afriat S.N. On a system of inequalities in demand analysis:an extension of the 
lassi
al method. // International e
onomi
review. 1973. V. 14, � 2. P. 460�472.2. Shananin A.A. Integrability problem and the generalizednonparametri
 method for the 
onsumer demand analysis(Russian). // Pro
eedings of MIPT. 2009. V. 1, � 4. P. 84�98.
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s3. Klemashev N.I., Shananin A.A. Inverse problems of demandanalysis and their appli
ations to 
omputation of positively-homogeneous Kon�us�Divisia indi
es and fore
asting. // Journal ofInverse and Ill-posed Problems. 2015. Advan
e online publi
ation.DOI: 10.1515/jiip-2015-0015.4. Grebennikov V.A., Shananin A.A. Generalized nonparametri
almethod: Law of demand in problems of fore
asting. //Mathemati
al Models and Computer Simulations. 2009. V.1, � 5.P. 591�604.5. Shananin A.A., Tarasov S. Computing the 
lass of the form of theinverse demand fun
tion on dis
rete data. 58 MIPT 
onferen
e.2015.System dynami
 
redit risk model of the
orporate borrowerD.S. KurennoyLomonosov Mos
ow State University, Mos
ow, RussiaNowadays system dynami
s is often used for solving various e
onomi
and so
ial problems. System dynami
s o�ers an approa
h in whi
h themodel resembles reality stru
turally, so we 
an validate it's usefulnessand 
onsisten
y. Furthermore, it o�ers a way to see the rami�
ations ofthat simpli�
ation through simulation, so we 
an test our hypotheses.System dynami
s [1, 2℄ is a perspe
tive and set of 
on
eptual tools thatenable us to 
omprehend the stru
ture and dynami
s of 
omplex systems.System dynami
s is also a rigorous modeling method that enables us toperform formal 
omputer simulations of 
omplex systems and use themfor di�erent purposes. This approa
h to understanding the nonlinearbehavior of 
omplex systems over time uses spe
ialized 
on
epts, whi
hare the elements of any system dynami
s model: sto
ks, �ows, internalfeedba
k loops, and time delays. Ea
h of these elements is interpreted indi�erent ways. Mathemati
ally, the basi
 stru
ture of a formal systemdynami
s 
omputer simulation model is a system of 
oupled, nonlinear,�rst-order di�erential (or integral) equations.This work fo
uses on the development of a system dynami
 
reditrisk model of the 
ompany �Bashneft�, whi
h is a major representativeof petroleum re�ning and petroleum produ
ing industries.The author intends to explore the possibility of using systemdynami
s to build models des
ribing produ
tion pro
ess and �nan
ial
onditions for a 
ompany. Spe
ial attention is paid to how the behavior
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s 103of di�erent ma
roe
onomi
 fa
tors in�uen
es the oil 
orporation. It'sworth noting that the 
rude oil pri
es and oil produ
t pri
es (on globaland Russian markets) are among the most signi�
ant fa
tors. In this
ase, the author 
onsiders su
h petroleum produ
ts as fuel oil, diesel fuel,and gasoline. Apart from those fa
tors, US dollar rate and tax system(mineral extra
tion tax, export duties, petroleum produ
ts domesti
ex
ise tax) have a dire
t e�e
t on the stability of the model. In addition,MosPrime rate is an important ma
roe
onomi
 fa
tor and a 
omponentof various stru
tures of the system dynami
s model. Mos
ow PrimeO�ered Rate is a referen
e rate �xed by the National Foreign Ex
hangeAsso
iation (NFEA) based on the o�er rates of Russian ruble depositsas quoted by 
ontributor banks - the leading parti
ipants of the Russianmoney market to the �rst 
lass �nan
ial institutions.
Fig. 1. Sto
k and �ow representation of a manufa
turing pro
ess.At the beginning of this work, a detailed analysis of the oil 
ompanyquarterly �nan
ial statements for the last 5 years was 
ondu
ted. Itallowed to identify the 
omponent parts of the model and to formalizesome relationships between them. Then system dynami
s tools wereemployed to observe how these relationships in�uen
e the behavior ofthe system over time. The result was a model that 
aptures not onlythe 
urrent state of the 
ompany, but also the further development of itspoli
y. This behavior is adjusted by 
hanging external ma
roe
onomi
fa
tors (implemented dire
t links) and 
ontrolled by the intera
tion ofinternal fa
tors, realized by dire
t links and feedba
k loops. Internalfa
tors may in
lude oil produ
tion volume, oil re�ning volume, di�erenttypes of 
osts, loan poli
y, and the volume of investments. Investmentsare aimed at redu
ing the 
ost of petroleum re�ning and petroleumprodu
tion. The obtained model 
an be divided into two global parts that
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onomi
sintera
t with ea
h other. The �rst part des
ribes the produ
tion pro
ess.It determines the volume of oil produ
tion, pur
hase and pro
essing andthe in�uen
e on the 
ompany pro�t. The se
ond part is related to the�nan
ial unit of the 
ompany. This determines the level of debt, 
ostsand loan for the 
onsidered 
orporation. As a result, the model allows tounderstand the strategy, level of loss and the probability of default forthe 
ompany in the presen
e of various ma
roe
onomi
 fa
tors.Referen
es1. Sterman J.D. Business Dynami
s: Systems Thinking and Modelingfor a Complex World. Boston: M
Graw-Hill Companies, 2000.2. Katalevsky D.U. Fundamentals Of Simulation Modeling AndSystem Analisys. Mos
ow: Mos
ow University Press, 2011.Gender in�uen
es on the parti
ipantsbehavior in the e
onomi
 experiments∗
I.S. Menshikov1, 2, O.R. Menshikova1, A.O. Sedush1,

T.S. Babkina1, 3, and E.M. Lukinova3
1MIPT , 2CCRAS, 3Skoltech, Mos
ow, RussiaMIPT Laboratory of experimental e
onomi
s has been 
arrying theexperiments beginning Fall 2013 [1, 2℄. The goal of that is to study
ooperation in so
ial dilemmas. Ea
h experiment 
onsistes of a di�erentset of 12 people, pre-sele
ted before the experiment to be unfamiliarwith one another. All parti
ipants are pre-tested using psy
hologi
alquestionaries.The �rst step in every experiment begins from anonymous gamephase, where parti
ipants played 2x2 e
onomi
 games. Parti
ipants arerandomly paired with an anonymous partner ea
h period of the game.Number of periods is not known to parti
ipants. Ea
h period parti
ipantsare given information only about their pro�t for that period. Afterthat, we 
arry the initial step of group so
ialization: in a sequen
e theparti
ipants tell their names and adje
tives that start from the sameletter, in a reverse order share their life fa
ts, and divide into the groups.Finally, the parti
ipants play the same games like in the �rst step in thenewly formed groups during the so
ialization.There is two series of the experiments:1.

∗This resear
h is supported by the grant RFFI 16-01-00633A.
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s 105In the �rst step two games Prisoners' Dilemma and Ultimatum Gameare 
ondu
ted. After the so
ialization phase two people from parti
ipantsvoluntarily be
ome leaders. The other parti
ipants de
ide one by onewhi
h leader they want to join. Thus two groups of 6 are formed. Bothgroups are asked to performe some group task. Series 1 
onsisted of 27experiments (N=324, 202 males)[3℄.2.Unlike in series 1, in series 2 we use Prisoners' Dilemma and TrustGame. Parti
ipants divide into the groups this way: two people fromparti
ipants voluntarily be
ome leaders; players that are not leadersare asked to de
ide whi
h a leader they want to join. On a pie
e ofpaper they indi
ate their 
hoi
e of leader and how mu
h money theyare willing to pay for joining the group. After that we form 3 groups of4 people. Two groups that in
lude leaders have to perform some grouptasks. Parti
ipants from the last group without a leader are not ableto speak to or even to look at ea
h. Therefore, the last group is notso
ialized. Series 2 
onsistes of 5 experiments (N=60, 45 males).Results:1. So
ialization in�uen
es de
isions in Prisoners' Dilemma andUltimatum Game in di�erent ways for males and females .In Prisoners' Dilemma the initial (before so
ialization) level
ooperation among women is higher than among men in series 1 (onaverage δ = .02, Nm = 202, Nf = 122, wil
oxon-test, p-value = .05) [4℄,in series 2 (on average δ = .12, Nm = 45, Nf = 15, wil
oxon-test, p-value = .05). Whereas after the so
ialization the per
entage of 
hoosing
ooperative strategies among males in series 1 in
reases (on average δ =.35, Nm = 202, wil
oxon-test, p-value < 0,001), in series 2 (on average
δ = .53, Nm = 45, wil
oxon-test, p-value < 0,001). Among females theper
entage of 
hoosing 
ooperative strategies in series 1 in
reases (onaverage δ = .18, Nf = 122, wil
oxon-test, p-value < .001), in series 2(on average δ = .42, Nf = 15, wil
oxon-test, p-value < .001).In Ultimatum Game the initial levels of 
ooperation for malesand females are equal. However, after the so
ialization the level of
ooperation for males is higher than for females (on average δ = .2,
Nm = 202, Nff = 122, wil
oxon-test, p-value=0,04).2. In Trust Game males trust less than females, but re
ipro
ate more.In Trust Game we analyzed the "average trust"and "the averagegratitude". Before so
ialization males trust less than females (on average
δ = .58 Nm = 45, Nf = 15, wil
oxon-test, p-value = .07) and theyre
ipro
ate more (on average δ = 1.18, Nm = 45, Nf = 15, wil
oxon-
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stest, p-value = .14). After so
ialization males are less trust than females(on average δ = .76, Nm = 45, Nf = 15, wil
oxon-test, p-value = .03)and they are more gratitude (on average δ = .76, Nm = 45, Nf = 15,wil
oxon-test, p-value = .02).Then
e we 
an 
on
lude that in Trust Game so
ialization has notso mu
h e�e
t 
ompared to Prisoners' Dilemma and Ultimatum Game.Here di�eren
es between sexes lead to more trust among females andmore gratitude among males.Our study is a 
on�rmation of the fa
t that it is important to takeinto a

ount di�eren
es between sexes in so
io-e
onomi
 models.Referen
es1. Ostrom E. Governing the 
ommons: The evolution of institutionsfor 
olle
tive a
tion. Cambridge: Cambridge University Press;1990.2. Fehr E, S
hmidt KM. A theory of fairness, 
ompetition, and
ooperation. Q J E
on. 1999; 114(3): 817-868.3. Berkman E.T., Lukinova E., Menshikov I., Myagkov M. So
ialityas a Natural Me
hanism of Publi
 Goods Provision. PLoS ONE,10(3), 2015, e0119685.4. Menshikova O.R., Menshikov I.S., Sedush A.O. In�uen
e of threetypes of so
ialization on the behavior of men and women in so
ialand e
onomi
 experiments. Pro
eedings of MIPT, 2015, pp 56-65.On long-term average optimality in lineare
onomi
 systems with unboundedtime-preferen
e rates∗E.S. Palamar
hukCentral E
onomi
s and Mathemati
s Institute, RASSteklov Mathemati
al Institute, RAS, Mos
ow, RussiaThe work in devoted to the study of an average optimality problemover an in�nite time horizon for linear sto
hasti
 e
onomi
 systems. Theagents have unbounded time-preferen
e rates in
luded into quadrati

ost fun
tion. In both 
ases of positive and negative dis
ounting wepropose new optimality 
riteria and establish average optimal 
ontrolsin the form of linear feedba
k laws.
∗The work is supported by the Russian S
ien
e Foundation under grant 14-50-00005.
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s 107We 
onsider a linear e
onomi
 system with evolution des
ribed by a
ontrolled sto
hasti
 pro
ess Xt de�ned on a 
omplete probability spa
e:
dXt = AXtdt+BUtdt+Gtdwt , X0 = x, (1)where A,B are 
onstant matri
es; Gt is time-varying; wt is amultidimensional Brownian motion; x is non-random; Ut, t ≥ 0, is anadmissible 
ontrol, i.e. an Ft = σ{ws, s ≤ t}�adapted pro
ess su
h thatthere exists a solution to (1). Let us denote by U the set of admissible
ontrols.The 
ost fun
tional is quadrati
 over the planning horizon [0, T ]:

J
(d)
T (U) =

∫ T

0

ft[(X
′
tQXt + U ′

tUt] dt, (2)where Q ≥ 0; ft is a dis
ount fun
tion, assumed to be monotone,di�erentiable, with f0 = 1; φt = −ḟt/ft de�nes the 
orrespondingdis
ount rate.We allow the agent to have either positive or negative time-preferen
e, i.e., φt > 0 or φt < 0. The impatien
e (or patien
e) inin�uen
e on her/his de
isions is 
onsidered to be 'extreme' in the sensethat |φt| → ∞, t→ ∞.Examples.Weibull dis
ount fun
tion ft = e−rtq (q > 1, r > 0) relatedto highly nonlinear subje
tive time per
eption [1℄. Negative doubleexponential dis
ounting, when ft = exp (exp rt) (r > 0).Assumption D1. For φt > 0 the dis
ount fun
tion ft islogarithmi
ally 
onvex.Assumption D2. For φt < 0 the dis
ount rate (−φ̇t)/φt ≤ c̄φt,
t→ ∞, for some 
onstant c̄ > 0.First assume there exists the absolute 
ontinuous symmetri

Πt ≥ 0, t ≥ 0, whi
h satis�es the Ri

ati equation

Π̇t +ΠtAt +A′
tΠt −ΠtBR

−1B′Πt +Q = 0 , (3)where At := A− 1/2φt · I (I is an identity matrix).Then we may de�ne a feedba
k 
ontrol law U∗ by
U∗
t = −B′ΠtX

∗
t , (4)where the pro
ess X∗

t , t ≥ 0, satis�es
dX∗

t = (A−BB′Πt)X
∗
t dt+Gtdwt, X∗

0 = x . (5)
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onomi
sFor bounded φt the 
riterion based on long-run expe
ted loss per unitof 
umulative dis
ount has been proposed in [2℄ to study the averageoptimality of U∗ when T → ∞. However, it would not seem to beadequate in the 
ase 
onsidered here.The above assumption on (3) is non-trivial. The well known su�
ient
onditions, e.g., 
ontrol system stabilizability and dete
tability, allrelated to bounded matri
es, 
learly do not hold sin
e ‖At‖ → ∞, → ∞.Moreover, At has spe
i�
 stability properties whi
h we des
ribe below.Remark. At is superexponentially stable if φt > 0; superexponentiallyantistable if φt < 0. The rate of stability (antistability) is φt (−φt).De�nition 1. Let At be a square matrix. Then we say that Atis superexponentially stable with the rate δt > 0 if δt → ∞, t→ ∞,
‖At‖ ≤ κδt and ‖Φ(t, s)‖ ≤ κ1 exp (−

t∫
s

δv dv) , s ≤ t, where Φ(t, s) is thefundamental matrix 
orresponding to At, κ, κ1 > 0 are some 
onstants;
At is superexponentially antistable if −A′

t is superexponentially stable.De�nition 2. The pair (At, Bt) is said to be δt-superexponentiallystabilizable if there exists a matrix Kt, ‖Kt‖ ≤ ĉ1δt su
h that
At +BtKt is superexponentially stable with the rate δt. Similarly, thepair (At, Ct) is δt-superexponentially dete
table if for Ft, ‖Ft‖ ≤ ĉ2δt ,the matrix At + FtCt is δt-superexponentially stable (ĉ1, ĉ2 are some
onstants).Obviously, if At is δt-superexponentially stable then (At, Bt)((At, Ct)) is stabilizable (dete
table) for any bounded Bt (Ct). Beingvalid for the 
ase φt > 0, it guarantees that the following statement holdstrue.Theorem 1. Let Assumption D1 hold. Then the 
ontrol U∗ givenby (4)�(5) is a solution to

lim sup
T→∞

EJ
(d)
T (U)

T∫
0

(ft/φt)‖Gt‖2 dt
→ inf

U∈U
.Note we do not assume any bounds on Gt, hen
e the averageoptimality result remains valid even for fast-growing perturbationparameters. Be
ause of D1, gt = ft/φt is de
reasing and may also beper
eived as a dis
ount fun
tion. Thus the denominator in the long-run average optimality 
riterion of Theorem 1 represents varian
e of
umulative extra-dis
ounted disturban
es. Due to antistability of At inthe 
ase of φt < 0, we need some requirements.
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onomi
s 109Assumption 1. The pair (At, Bt) is (−φt)-superexponentiallystabilizable; the pair (At, Ct) is (−φt)-superexponentially dete
table.Assumption 2. Let Gt and ft be su
h that
lim
t→∞

φtft‖Gt‖2
t∫
0

φsfs‖Gs‖2 ds
φt = 0 .Next we state the following result.Theorem 2. Let Assumptions D2, 1 and 2 hold. Then the 
ontrol

U∗ given by (4)�(5) is a solution to
lim sup
T→∞

EJ
(d)
T (U)

T∫
0

(−φt)ft‖Gt‖2 dt
→ inf

U∈U
.Again, we observe (negative) extra-dis
ounting by gt = (−φt)ft > ft intothe average optimality 
riterion. Unlike the positive time-preferen
e
ase, the 
ondition relating dis
ount rate and dis
ounted disturban
esis needed to establish the average optimality when φt < 0. At least, weshould 
onsider only fading perturbations, i.e. ‖Gt‖ → 0, t→ ∞.Referen
es1. Kim B.K., Zauberman G. Per
eption of anti
ipatory time intemporal dis
ounting // Journal of Neuros
ien
e, Psy
hology, andE
onomi
s. 2009. V. 2, �. 2. P. 91.�101.2. Palamar
huk E.S. Stabilization of Linear Sto
hasti
 Systems with aDis
ount: Modeling and Estimation of the Long-Term E�e
ts fromthe Appli
ation of Optimal Control Strategies // Mathemati
alModels and Computer Simulations. 2015. V. 7, �. 4. P. 381�388.Quantile hedging of European option inmultidimensional in
omplete market withouttransa
tion 
osts (dis
rete time)O.V. ZverevCEMI RAS, Mos
ow, RussiaTheory of European option's hedging with quantile 
riterion in in-
omplete markets without transa
tion 
osts in dis
rete time was 
onsi-dered in some arti
les [1�4, 6�7℄. In [1℄ a pro
edure of European
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soption's 
al
ulation with quantile 
riterion in one-dimensional 
ompletemarket without transa
tion 
osts was o�ered. The pro
edure is basedon theorem about S-representation of martingales [5℄. In [4℄ for stri
tlypositive 
ontingent 
laim in 
omplete one-dimensional market withouttransa
tion 
osts they 
onstru
ted solution for the problem of quantilehedging. In [6�7℄ dual problems are under resear
h: (1) dire
t problemis to maximaze probability of su

essful hedging with restri
tion thatoption's value does not ex
eed some given 
onstant x0 > 0; (2) dualproblem is to minimaze option's value with restri
tion that probabilityof su

essful hedging is not less than 1 − ε, where ε ∈ (0, 1) isarbitrary. Unlike above stated pro
eedings we prove that solution ofthe quantile hedging problem in multidimensional in
omplete marketwithout transa
tion 
osts 
an be redu
ed to two superhedging problems.1. Superhedging portfolio of European option. Let
{St,Ft}t∈N0

be a d-dimensional (d < ∞) adapted random sequen
eon the sto
hasti
 basis (Ω,F , {Ft}t∈N0
,P
), where N0 , {0, ..., N},

N < ∞ is a horizon. The sequen
e des
ribes evolution of pri
e for drisky assets. By S(j)
t we denote 
omponent j of d-dimensional ve
tor St,

t ∈ N0. We suppose that there is one risk-free asset with zero return andinitial 
ost 1. Let fN (S•) be a FN -measurable bounded random variable,
S• , (S0, ..., SN ). By ℜN we denote the set of probability measures Qsu
h that any measure Q ∈ ℜN is equivalent to measure P. MN is theset of martingale measures. Let γN1 , {γt}t∈N0

be a d-dimensional F-predi
table sequen
e and {βt}t∈N0
be a F-predi
table one-dimensionalsequen
e. The sequen
e of pairs π , (βt, γt)t∈N0

is 
alled portfolio [5℄.We denote 1AN
(ω) ,

{
1, if ω ∈ AN

0, if ω /∈ AN
, where AN is an arbitrary

FN -measurable set. Let us 
onsider two 
al
ulation problems for Euro-pean option with 
ontingent 
laims fN (S•) and 1AN
(ω) in in
ompletemarket without transa
tion 
osts [5℄.Theorem 1. Suppose |ℜN ∩MN | ≥ 1. Than with respe
t to anymeasure Q ∈ ℜN there exists solution of the 
al
ulation problem forEuropean option with 
ontingent 
laim fN (S•) (1AN
(ω)).Remark. The solution of the 
al
ulation problem for Europeanoption with 
ontingent 
laim fN (S•) (1AN

(ω)) 
an be fully des
ribedas follows: π∗ = {β∗
t , γ

∗
t }t∈N1

(
πλ =

{
βλ
t , γ

λ
t

}
t∈N1

) � self-�nan
ingportfolio,Xπ∗
t

(
Xπλ

t

) � 
apital of portfolio π∗ (πλ
) at a moment t ∈ N0,

C∗
t

(
Cλ

t

) is a 
onsumption at any moment t ∈ N1, X(π∗,C∗)
t = Xπ∗

t −C∗
t
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(
X
(πλ,Cλ)
t = = Xπλ

t − Cλ
t

) is a 
apital of superhedging portfolio with
onsumption (π∗, C∗)
((
πλ, Cλ

)) [2℄.2. Quantile superhedging portfolio of European option. Letus denote: (i) {χt,Ft}t∈N0
� adapted random sequen
e with boundedvariation P-a.s. [5℄; (ii) c , Xπ∗
t

∣∣
t=0

.De�nition. A pair (π, χ) we 
all self-�nan
ing portfolio withbounded variation, where π ∈ SF . Capital of portfolio with boundedvariation (π, χ) at a moment t ∈ N0, denoted by X(π,χ)
t , we de�ne byequality X(π,χ)

t = Xπ
t − χt.De�nition. By solution of the 
al
ulation problem for Europeanoption with 
ontingent 
laim fN (S•) and with quantile 
riterion of level

1− α (where α ∈ (0, 1)) in in
omplete market without transa
tion 
ostswith respe
t to any measure Q ∈ ℜN we mean self-�nansing portfoliowith bounded variation (πα, χα) su
h that it's 
apital X(πα,χα)
t at amomentN satis�es inequality Q(X(πα,χα)

N ≥ fN (S•)
)
≥ 1−α. Portfolio

(πα, χα) we will name quantile superhedging portfolio of level 1− α.Theorem 2. Suppose fN (S•) is a FN -measurable bounded randomvariable and |ℜN ∩MN | ≥ 1. Suppose also that for any α ∈ (0, 1) thereare λ(j)t (α) ∈ R
+, j = 1, d, t ∈ N0 su
h that with respe
t to any measure

Q ∈ ℜN the following inequality is true
Q




N⋂

t=1

d⋂

j=1

{
S
(j)
t ≥ λ

(j)
t (α)

}

 ≥ 1− α.Then there exists solution of the 
al
ulation problem for European optionwith quantile 
riterion of level 1− α.Remark. Quantile superhedging portfolio of level 1−α, i.e. (πα, χα),has the form: γαt = γ∗t − cγλt , βα

t = β∗
t − cβλ

t , χα
t = C∗

t − cCλ
t . It's initial
apital X(πα,χα)

0 = c
(
1−Xπλ

0

).3. Minimax quantile hedging portfolio of European option.In presentation the solution of European 
al
ulation problem withrespe
t to the "worst-
ase" measure Q∗ /∈ ℜN will be given (see. [2℄). Itis proved that with respe
t to Q∗ initial in
omplete market is 
ompleteand Q∗ is dis
reet. This fa
ts allowed us to 
onstru
t new examplesof European option's 
al
ulation with quantile 
riterion in in
ompletemarket with respe
t to Q∗.
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Solution of two-parameter
onsumption-investment problemV. BabinMos
ow State University, Mos
ow, RussiaThis work 
on
erns the 
onsumption-investment problem with sto-
hasti
 interest rate rt [1℄ and volatility ηt [2, 3℄. The resulting model is
lose to [4℄. More detailed des
ription see in [5℄.We 
onsider a model with parameters ηt è rt, whose dynami
s aredriven by Cox-Ingersoll-Ross (CIR) model [6℄:
dηt = l(N − ηt)dt+ ση

√
ηtdZ1(t),

drt = k(R− rt)dt+ σr
√
rtdZ2(t),where ση, σr , l,N , k, R are positive 
onstants. Z1(t) è Z2(t) are indepen-dent standard Wiener pro
esses. Furthermore it is assumed that 2lN >

σ2
η and 2kR > σ2

r .Finan
ial market 
onsists of three assets, whi
h are traded
ontinuously over [0, T ]. One is a risk-free asset with interest rate rtand other two are risky assets, whose pri
e pro
esses S1t, S2t satisfyequations
dS1t

S1t
= (rt +mηt)dt+ σ1

√
ηtdZ1(t),

dS2t

S2t
= (rt + nrt)dt+ σ2

√
rtdZ2(t),where m, n, σ1, σ2 are positive 
onstants.
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e and bankingAssume that the investor has a power utility fun
tion u(C) = Cγ/γ.At time t he invests in risky assets and 
onsumes fra
tions π1,2t and ctrespe
tively.Mathemati
ally, the investor wishes to maximize the followingexpe
ted utility:
U(W, η, r) = max

(cs≥0, π1,2 s)|Ts=0

E0


α

T∫

0

e−δs (csWs)
γ

γ
ds+ (1− α)e−δT W

γ
T

γ


 ,where e−δt is a dis
ount 
oe�
ient.Using the dynami
 programming prin
iple, one 
an get the Hamilton-Ja
obi-Bellman equation

H(W, η, r, t) = max
(cs≥0, π1,2 s)|Ts=t

Et


α

T∫

t

e−δs (csWs)
γ

γ
ds+ (1− α)e−δT W

γ
T

γ


 .Let us introdu
e the following notation

Df =
σ2
1 l

2 − γ (σ1l + σηm)
2

(1− γ)σ2
1

, Dg =
σ2
2k

2 − γ
[
(σ2k + σrn)

2
+ 2σ2

2σ
2
r

]

(1− γ)σ2
2

,

λ1,2 =
1

σ2
η

(
l − γ

1− γ

ση
σ1
m

)
±
√
Df

σ2
η

, X =
σ2
η(λ1 − λ2

2
,

λ3,4 =
1

σ2
r

(
k − γ

1− γ

σr
σ2
n

)
±
√
Dg

σ2
r

, Y =
σ2
r (λ3 − λ4)

2
.Then the Hamilton-Ja
obi-Bellman equation has a solution of theform

H(W, η, r, t) = e−δtW
γ

γ
F 1−γ(η, r, t),where

F (η, r, t) = α1/(1−γ)

T∫

t

G(η, r, s)ds + (1− α)1/(1−γ)G(η, r, t),

G(η, r, t) = ef(t)η+g(t)r+h(t),
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tions f(t), g(t) and h(t) are de�ned as
f(t) =

λ1λ2
(
eX(T−t) − 1

)

λ1eX(T−t) − λ2
, g(t) =

λ3λ4
(
eY (T−t) − 1

)

λ3eY (T−t) − λ4
,

h(t) = lN

T∫

t

f(s)ds+ kR

T∫

t

g(s)ds− δ

1− γ
(T − t).Optimal investor strategies are equal to

π∗
1(η, r, t) =

m

(1− γ)σ2
1

+
ση
σ1

F ′
η(η, r, t)

F (η, r, t)
,

π∗
2(η, r, t) =

n

(1− γ)σ2
2

+
σr
σ2

F ′
r(η, r, t)

F (η, r, t)
,

c∗(η, r, t) =
α1/(1−γ)

F (η, r, t)
.Furthermore, assuming a number of restri
tions one 
an estimate theexpe
ted utility for in�nite time horizon as

Û(W, η, r) =
W γ

γ

(
K

L

)1−γ

e(1−γ)(λ2η+λ4r)and the optimal strategies are equal to
π̂1

∗
=

m

(1− γ)σ2
1

+
ση
σ1
λ2; π̂2

∗
=

n

(1 − γ)σ2
2

+
σr
σ2
λ4; ĉ

∗ =
L

K
e−λ2η−λ4r,where

K =

(
λ1 − λ2
λ1

)2lN/σ2
η
(
λ3 − λ4
λ3

)2kR/σ2
r

, L =
δ

1− γ
− lNλ2 − kRλ4.Referen
es1. Korn R., Kraft H. A sto
hasti
 
ontrol approa
h to portfolio prob-lems with sto
hasti
 interest rates// SIAM Journal of Control andOptimization, 2001. V. 40. P. 1250�12692. Heston S.L. A 
losed-form solution for options with sto
hasti
volatility with appli
ations to bonds and 
urren
y options// TheReview of Finan
ial Studies. 1993. V. 6. � 2. P. 327�343.
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e and banking3. Fleming W.H., Pang T. An Appli
ation of Sto
hasti
 ControlTheory to Finan
ial E
onomi
s// SIAM Journal of Control andOptimization. 2004. V. 43. � 2. P. 502�531.4. Chang H., Rong X. An investment and 
onsumption problem withCIR interest rate and sto
hasti
 volatility// Abstra
t and AppliedAnalysis. 2013. Spe
ial Issue(2012). Arti
le ID 219397. P. 1�12.5. Liu J. Portfolio sele
tion in sto
hasti
 environments// The Reviewof Finan
ial Studies. 2007. V. 20. � 1. P. 1�39.6. Cox J.C., Ingersoll J.E.Jr., and Ross S.A. An IntertemporalGeneral Equilibrium Model of Asset Pri
es// E
onometri
a. 1985.V. 53. � 2. P. 363�384.Futures position management based onmultistage sto
hasti
 programmingD.Y. Golembiovsky1, T.V. Bezru
henko2, and I.N. Lagoda3
1, 3Mos
ow State University, 1Sinergy University, 1Bank ZENIT,

2Renaissan
e 
apital , Mos
ow, RussiaThis report introdu
es futures portfolio management models. Thesemodels take into a

ount an initial margin for futures. They 
onsidera long-term investment horizon whi
h 
an be transfered in the futurein a 
ase of low probability to a
hieve the required portfolio valueat the end of investment horizon. Analyzed models allow trading infutures of di�erent expirations. Buy/sell 
ommission is dedu
ted fromthe a

ount for ea
h trade. Variation margin is 
al
ulated ea
h tradingday. Thus, su
h portfolio management models are 
lose to the real market
onditions.This work presents results of experiments, where the portfolioin
ludes futures of di�erent expiration dates on a single underlying asset.We 
onsider three underlying assets: RTS index, Gazprom and Sberbank.The pri
es of the relevant futures have been taken fromMos
ow ex
hangewebsite [1℄. The pri
e of the underlying asset is modeled using ARIMA-GJR model. It is a GARCH model with a leverage e�e
t whi
h stemsfrom the fa
t that losses have a greater in�uen
e on future volatilitiesthan gains.
σ2
t = K + δσ2

t−1 + αǫ2t−1 + φǫ2t−1It−1 (1)where It−1 = 0 if ǫt−1 ≥ 0, and It−1 = 1 if ǫt−1 < 0.The problem of portfolio optimization is formulated as a problem ofmultistage sto
hasti
 programming [2℄, [3℄. Rebuilding the portfolio in
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ordan
e with the solution of the optimization problem is done everytrading day. For this optimization in a parti
ular trading day a tree ofs
enarios of possible pri
e movements of the underlying asset with the
orresponding probabilities of the s
enarios is built using ARIMA-GJRmodel. Next, the problem of dynami
 portfolio optimization is solvedusing this tree. The results of the optimization are re
ommendations tobuy and sell 
ontra
ts in the root node of the tree, whi
h minimize therisk of failure to a
hieve the required value of the portfolio by a 
ertaindate.The 
al
ulations in ea
h simulated trading day on the futures marketin
lude: 
ommission for the transa
tions, 
al
ulation of variation margin,monitoring the probability of rea
hing the required portfolio value.Let u be a desired value of the portfolio at the terminal moment oftime;
gν is a value determined for ea
h s
enario ν based on the followinginequalities:

gν +WTν
≥ u, gν ≥ 0 (2)Then the optimization 
riterion 
an be written as follows:

min
N∑

ν=1

gνpν , (3)
pν is the probability of the s
enario ν.This 
riterion presents a minimum of the expe
tation value of gν . So,solving the optimization problem the portfolio with minimal expe
tedpossible gap is 
onstru
ted.The result of modelling 2 months trading for portfolio whi
h in
ludedfutures on Sberbank is presented in Fig. 1. The required 
apital was120000 roubles, the initial 
apital was 100000 roubles,the 
ommissionper trade was 2 roubles, maintenan
e margin was 1400 roubles for a
ontra
t. For a terminal moment of time the value of the portfolio was117334. It is less than the required value but still the portfolio showed apro�t.On the whole, we simulated 1-year tra
es of portfolio managementfor RTS index futures, futures on Gazprom and Sberbank with di�erentmaturities. Referen
es1. http://moex.
om/.
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Fig. 1. Result for portfolio of futures on Sberbank.2. Shapiro A., Dent
heva D. Rusz
zynski A. Le
tures on Sto
hasti
Programming: modeling and theory// MPS-SIAM Series onOptimization. - 2009.3. Golembiovsky, D. and Abramov, A., Option portfolio managementas a 
han
e 
onstrained problem. In Sto
hasti
 Programming:Appli
ations in Finan
e, Energy, Planning and Logisti
s, editedby H. Gassmann, S. W. Walla
e, W. T. Ziemba, 2013, 155-172(World S
ienti�
).Maximum likelihood estimator for defaultrate of the 
redit portfolioV.V. Levin, S.Y. Guskov, and S.A. KhonovBauman Mos
ow State Te
hni
al University (BMSTU) and Mos
owInstitute of Ele
troni
s and Mathemati
s (MIEM HSE), Mos
ow,Russian FederationBanks must 
al
ulate reserves for possible 
redit portfolio losses ina

ordan
e with Basel II requirements [3℄ by the following formula (1):Reserves = EAD ∗ PD ∗ LGD, (1)where EAD � the Exposure at Default, PD � Default Probability of
redit; LGD (Loss Given at Default) -� non-payment of funds by 
redit
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urs.Banks usually uses di�erent delinquen
y indexes for 
ontrol of defaultrisk level.There is o�ered to use the maximum likelihood estimator for samplesfrom the strati�ed set [1,2℄ to estimate the 
redit portfolio default rate.Let t0 < t1 < · · · < ti < tN are the given 
alendar date, here themonth's last days are 
onsidered. Let Vi(t) is a vintage ( = set of loans,opened during time period [ti−1, ti]) at the 
urrent moment t, and Vi isthe vintage Vi(t) at the moment t = ti, i = 1, . . . , N . It is 
lear that
Vi(t) ∩ Vj(t) = ∅, i 6= j, Vi(t) = ∅, if t < ti, i = 1, . . . , N.
∪N
i=1 Vi(t) is a 
redit portfolio at moment t.For vintage Vi = Vi,D ∪ Vi,ND, where Vi,D(Vi,ND) is the set ofdefaulted (non-defaulted) 
redits in the vintage. Quantity K(Vi,D) ofdefaulted 
redits and quantity K(Vi,ND) of non-defaulted 
redits invintage Vi are unknown, but vintage size K(Vi) = K(Vi,D) +K(Vi,ND)is known. Let βit is the rate of observed defaults in Vi(t) at the moment

t, i = 1, . . . , N.Maximum likelihood estimator β̂it (from [1,2℄) might be used forassessing default rate of a 
redit portfolio ⋃N
i=1 Vi(t) at the moment t.It is o�ered the following maximum likelihood estimator of defaultprobability PDt for the given moment t:

P̂Dt =

(
N∑

i=1

β̂itK (Vi(t))

)
/

N∑

i=1

K (Vi(t)) .Referen
es1. G. I. Iv
henko and S. A. Khonov An asymptoti
 estimate forstrati�ed �nite populations. Diskr. Mat., 1989, Volume 1, Issue3, Pages 87�95.2. G. I. Iv
henko and S. A. Khonov Statisti
al estimation of the
omposition of a �nite set. Diskr. Mat., 1996, Volume 8, Issue 1,Pages 3�40.3. Basel II: International Convergen
e of Capital Measurement andCapital Standards (2006), p.86.
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e and bankingBounds on the value of Ameri
an option ondi�eren
e of two assets∗V.V. Morozov and K.V. KhizhnyakMos
ow State University, Mos
ow, RussiaAn Ameri
an 
all option on the di�eren
e of two assets (a two sideMargrabe option [1℄) provides its holder the right to ex
hange one assetfor another at any time prior to expiration T at strike Ki, i = 1, 2depending on the asset. An upper bound is 
onstru
ted using a methodbased on the integral formula of option value [2℄. A lower bound is derivedby Monte Carlo simulations using exer
ise boundary approximation asa de
ision rule.We 
onsider the asset values Si(t), i = 1, 2 satisfy the equations ofgeometri
al Brownian motion dSi(t) = Si(t)(αidt + σidzi(t)), i = 1, 2,where zi(t), i = 1, 2 are standard Wiener pro
esses (zi(0) = 0) with
onstant 
orrelation |ρ| < 1, r > 0 is a bank interest rate, αi = r − δiare the average rates of return, σ2
i are the average volatilities, δi > 0are the dividends paid on the ith asset. The payo� at time t is givenby f(S(t)) = max

i=1,2
(Si(t) − S3−i(t) − Ki)+ where a+ = max(a, 0) and

S(t) = (S1(t), S2(t)).Let S = (S1, S2). The initial option value F (S, t) 
an be determinedas an upper bound of mean dis
ounted payo�s over all the exer
isede
ision rules: F (S, t) = supτ∈[t,T ]E[e−r(τ−t)f(S(τ))|S(t) = S].The optimal de
ision rule is given by [3℄
τ∗ = min (t | F (S1(t), S2(t), t) = f(S1(t), S2(t), t), T )and de�nes the immediate exer
ise region

E(t) =
{
S ∈ R

2
+ | F (S, t) = f(S, t), max(S1(t), S2(t)) > 0

}
.It is shown that the immediate exer
ise region E 
onsists of twodisjoint subregions:

Ei(t) =
{
S ∈ E(t)

∣∣∣ Si(t)− S3−i(t) >
Ki −K3−i

2

}
, i = 1, 2.Let Gi(S3−i, t) denote the border of the subregion Ei(t), i = 1, 2. It isshown that Gi(S3−i, t) are 
onvex nonde
reasing fun
tions and the graph

∗The reported study was funded by RFBR a

ording to the resear
h proje
t �16-01-00353 a.
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e and banking 121of Gi(S3−i, t) approa
hes asymptoti
ally the line Si = ci(t)S3−i +wi(t),where ci(t) > 1 and w1(t) > (K1 −K2)/2, w2(t) > −c2(t)(K1 −K2)/2in 
ase of K1 > K2.To derive the 
oe�
ients ci(t), wi(t) and derivatives G′
i(0, t) theintegral formula of option value is used [4℄:

F (S, t) = C(S, t) +

2∑

i=1

T∫

0

e−rt

∫

Mi(t)

(
δiSie

α̃it+σi

√
txi −

−δ3−iS3−ie
α̃3−it+σ3−i

√
tx3−i − rKi

)
ψ(x)dxdt, i = 1, 2,

Mi(t) =
{
x ∈ R

2
+ | Sie

α̃it+σi

√
txi > Gi(S3−ie

α̃3−it+σ3−i

√
tx3−i , t)

}
, (1)where C(S, t) = e−r(T−t)E[f(S(T ))] is a pri
e of 
orresponding Europeanoption, x = (x1, x2), ψ(x) is a bivariate normal density fun
tion. Let

α̃i = αi −
σ2
i

2
, σ2 = σ2

1 − 2ρσ1σ2 + σ2
2 , α̃ = α1 − α2, α̂ = α̃1 − α̃2,

di(Si) =
ln(Si/Ki) + (α̃i + σ2

i )T

σi
√
T

, d̃i(Si) =
ln(Si/Ki) + (α̃i + ρσ1σ2)T

σi
√
T

,

a =
ρ√

1− ρ2
, ri = r − α̃i, ζi =

1

σi
√
1− ρ2

, bi = α̃iζi, b
′
i = (α̃i + σ2

i )ζi,

δi,3−i = δi − α̃3−i − ρσ1σ2, d(ci) =
ln(ci) + ((−1)3−iα̃+ σ2

2 )T

σ
√
T

,

d̃(ci) =
ln(ci) + ((−1)3−iα̃− σ2

2 )T

σ
√
T

, d̂(ci) =
ln(ci) + (−1)3−iα̂T

σ
√
T

,

b′′i = (α̃i + ρσ1σ2)ζi, Λ
′
i,3−i = I(a, b′i, σ3−i, 0, δi,3−i)− I(a, b′i, 0, 0, δi),

λi =
rKi

Gi(0, 0)
, Λi,3−i = I(a, bi, σ3−i, 0, r3−i)− I(a, bi, 0, 0, r),

I(a, b, c, d, δ) =
e
− d(b+ac)

a2+1

√
η

[
e
− |d|√η

a2+1 Φ

(√
ηT

a2 + 1
− |d|√

(a2 + 1)T

)
−

−e
|d|√η

a2+1 Φ

(
−
√

ηT

a2 + 1
− |d|√

(a2 + 1)T

)]
,

η = (b + ac)2 + (−c2 + 2δ)(a2 + 1) > 0.
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J(a, b, d, δ) = h(d)− e−δTΦ

(
b
√
T + d√

T√
a2 + 1

)
+

+
1

2

(
b√
η(0)

− 2h(d) + 1

)
e
− db+d

√
η(0)

a2+1 Φ

(√
η(0)T

a2 + 1
− d√

(a2 + 1)T

)
−

−1

2

(
b√
η(0)

+ 2h(d)− 1

)
e
−db−d

√
η(0)

a2+1 Φ

(
−
√
η(0)T

a2 + 1
− d√

(a2 + 1)T

)
,where η(0) = b2 + 2δ(a2 + 1), δ > 0, d > 0, h(0) = 1/2, h(d) = 1 if

d > 0.It is shown that G′
i(0, 0) is equal to

1− J(a, b′′i , 0, δ3−i)− e−δ3−iTΦ(d̃i(Gi(0, 0)))

1− J(a, bi, 0, δ) + δiζiΛ′
i,3−i − λiζiΛi,3−i − e−δiTΦ(di(Gi(0, 0)))

.The 
oe�
ients ci(t) and wi(t), i = 1, 2 for any 0 < t < T are derivedas a solution of the system of nonlinear equations.Note that fun
tion Gi(S3−i, t) = max[G′
i(0, t)S3−i +

Gi(0, t), ci(t)S3−i + wi(t), (δ3−iS3−i + rKi)/δi] is not greater than
Gi(S3−i, t), i = 1, 2. Let M̄i be Mi substituting Gi(S3−i, t) for
Gi(S3−i, t). Then Mi is 
ontained in M̄i. An upper bound of the optionvalue 
an be derived by substituting Mi for M̄i into (1).For example, let r = 0.05; δ1 = δ2 = 0.01; σ1 = 0.2; σ2 = 0.1; ρ =
0.5; K1 = 8; K2 = 5; S1 = 15;S2 = 5; T = 3 then: c1(0) = c2(0) =
1.775; w1(0) = 13.97; w2(0) = 5.39.The lower bound of the option is 
al
ulated using the exer
ise rule
τ0 = min[min{t|S(t) ∈ M̄1(t)

⋃
M̄2(t)}, T ] and Monte-Carlo simulation.An upper bound is equal to 3.428, and a lower bound is equal to 3.424.Referen
es1. Margrabe W. The value to ex
hange one asset for another //Journal of Finan
e. 1978. V. 33, � 1. P. 177�186.2. Vasin A.A., Morozov V.V. Investment de
ision under un
ertaintyand evaluation of Ameri
an options // International Journal ofMathemati
s, Game Theory and Algebra. 2006. V. 15, � 3. P. 323�336.3. Shiryaev A.N. Optimal Stopping Rules. New-York: Springer-Verlag, 1978.
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e and banking 1234. Broadie M., Detemple J. The valuation of Ameri
an optionson multiple assets // Mathemati
al Finan
e. 1997. V. 7, � 3.P. 241�285.On VaR-type risk measures underhedging of Ameri
an 
ontingent 
laims∗A.I. SolovievLomonosov Mos
ow State University, Mos
ow, RussiaIn this study we resear
h game problems between seller and buyerof an Ameri
an 
ontingent 
laim, dis
uss properties and optimization
omplexity of value-at-risk measure and expe
ted shortfall and developde
omposition methods to solve these problems mu
h more faster.We 
onsider a multiperiod model of the �nan
ial market whi
h leadsto a large s
ale nature of the given problems be
ause a number ofbuyer's strategies grows overexponentially. Therefore, de
omposition ofthese games turns out to be our fundamental goal. As for the mainoptimization problem, we look for the optimal investment strategy whi
hprodu
es the minimal losses asso
iated with imperfe
t (or in
omplete)hedging of Ameri
an 
ontingent 
laim. It 
onsists in �nding a minimaxvalue of a spe
i�
 zero-sum game.We suppose that se
urity trading in �nan
ial market o

urs in deter-ministi
 moments of time and a market has a �nite number of s
enarios(however, it may be quite huge). There are no transa
tion 
osts duringthe trades. The market 
onsists of a few tradable se
urities with knownprobability distribution of pri
es. One se
urity is riskless (a bank depositor a bond), it has stri
tly positive pri
es. The number of risky se
urities(sto
ks) 
an be any.The set of states N of the market has a tree stru
ture. It is dividedinto pairwise disjoint subsets of states Nt whi
h may o

ur at spe
i�
time moments t = 0, ..., T. The set N0 
ontains the only element � a rootof the tree denoted by 0. Every node n ∈ Nt, where t = 1, ..., T , has aunique parent node.We state a zero-sum game between two players: a seller of the 
ontin-gent 
laim and its buyer. The seller is an investor in wide sense, he buildsa trading strategy to hedge the Ameri
an 
ontingent 
laim. The buyer
∗The reported study was funded by RFBR a

ording to the resear
h proje
t No.16-31-00070 mol_a.
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ises the 
laim in some moment of time (i.e. obliges the seller to paythe 
laim value using his right spe
i�ed in a 
ontra
t).The main feature of an Ameri
an 
ontingent 
laim is an un
ertainmoment of exer
ise. So, Ameri
an 
laims may be exer
ised by its buyerat any time t = {0, ..., T } up to expiration date. Exer
ise time is usually
onsidered as an un
ertain fa
tor in investment problems. Besides, itmeans stopping time for random pro
esses of the 
laim and the losses.Next, we de�ne strategies of players.Investor strategy is a self-�nan
ing portfolio pro
ess, i.e. he doesnot spend money and does not get any revenue from outside. Portfoliovalue pro
ess V = {V (t)} 
orresponds to a trading strategy. A randomvariable V (t) takes values Vn equal to s
alar produ
ts of pri
e andportfolio ve
tors. We suppose that there are no arbitrage opportunitiesin the market, i.e. there are no trading strategies, su
h that the investorloses nothing and yields a positive pro�t with a positive probability. We
onsider only admissible trading strategies, the ones whi
h prevent theinvestor from ruin.Buyer's strategy is a moment of time when the 
ontingent 
laimis exer
ised. Let us des
ribe it with a random variable τ. For ea
hsequen
e of 
onse
utive states (n0, ..., nT ) it produ
es the only state,where stopping o

urs. Let Nτ be a set of these states. We show thata set of buyer's strategies grows overexponentially while a number oftrading periods T in
reases.An Ameri
an 
ontingent 
laim is des
ribed with a non-negative sto-
hasti
 pro
ess F = {F (t)}. The examples of a 
ontingent 
laim arepayments on option, forward or futures 
ontra
ts. Portfolio strategyhedges an Ameri
an 
ontingent 
laim F exer
ised in time τ if theportfolio values Vn ≥ Fn for all n ∈ Nτ . Perfe
t hedging (with probabilityone) of an Ameri
an 
ontingent 
laim generally requires 
onsiderableinitial endowment from the seller.Suppose that the seller does not have a ne
essary sum for perfe
thedging and de
ides to manage with less initial endowment taking therisk of future losses. So, if the 
laim is exer
ised in state n ∈ N of themarket, then seller's losses are equal to (Fn −Vn)
+ = max{Fn −Vn; 0}.In the �rst part of this resear
h we propose value-at-risk (VaR) as arisk measure to estimate the losses from imperfe
t hedging. It is equalto the minimum value su
h that the expe
ted losses do not ex
eed itwith a spe
i�ed probability. In other words, VaR 
orresponds to theamount of uninsured risk whi
h the seller 
an take; see [2℄. This measureis re
ommended primarily for monitoring market risks and e�e
tiveness
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e and banking 125of hedging strategies. VaR approa
h of risk estimation was also widelystudied in [3℄. We evaluate seller's losses in exer
ise time τ using thevalue-at-risk fun
tion:
VaRα

(
(F (τ)− V (τ))+

)
= min{B ∈ R |P

(
(F (τ) − V (τ))+ ≤ B

)
≥ α},where α is a preset level of signi�
an
e.We state the optimization problem from the seller's side to �ndan optimal investment strategy V whi
h imperfe
tly hedges 
ontingent
laim F and minimizes a loss fun
tion VaRα under un
ertain exer
isetime τ. The given problem 
onsists in �nding a minimax value of thegame and 
an be formulated in the following way:

min
V

max
τ∈T

VaRα((F (τ) − V (τ))+)

Vn ≥ 0, ∀n ∈ N .We in
orporate binary variables x whi
h 
hara
terize the de
isions
oupled with probability 
onstraints in a de�nition of VaR and formulatethe original problem as a mixed-integer programming problem. Then,we prove the existen
e of optimal trading strategy su
h that x∗ has amonotoni
 nature over time. Namely, we show that
x∗(t) ≥ x∗(t+ 1), ∀ t = 0, ..., T − 1.Then, we analyze the similar optimization problem using expe
tedshortfall as a risk measure (see [1℄) and dis
uss this problem from thebuyer's perspe
tive. It allows us to take into 
onsideration not only thefa
t of losses but the amount of them as well. Here the problem 
onsists in�nding maximin value. We show that 
onsidered utility fun
tions usuallybut not always have saddle points.The obtained results allow to substantially de
rease a number of
onstraints in the original problem and let us turn to an equivalentmixed integer problem with admissible dimension. Thus, we ex
lude theun
ertainty asso
iated with the time of exer
ising the 
ontingent 
laim.The out
omes of this study 
an be useful for software systemsdevelopment in �nan
ial institutions whi
h deal with valuation andhedging of 
ontingent 
laims, building trading strategies. Considerationof dis
rete models of a �nan
ial market for dealing with investmentproblems allowed to apply methods of mathemati
al programming andgame theory.
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Impa
t of risky investments on the solven
yof insurers in a model with sto
hasti
premiumsT.A. Belkina*, N.B. Konyukhova**, and S.V. Kuro
hkin***Central E
onomi
s and Mathemati
s Institute of RAS,**Dorodni
yn Computing Center of RAS FRC CSC of RAS,Mos
ow, RussiaWe 
onsider the mathemati
al insuran
e model with sto
hasti
premiums and risky investments; for its detailed and 
ompleteinvestigation, see [1�3℄ and referen
es therein.1. For the modi�ed Cram�er-Lundberg model with sto
hasti
premiums, the 
ontinuous-time risk pro
ess has the form

Rt = u+

N1(t)∑

i=1

Ci −
N(t)∑

j=1

Zj , t ≥ 0. (1)Here, Rt is the surplus of an insuran
e 
ompany at time t; u is theinitial surplus (IS); the �rst sum on the right-hand side represents theaggregate premiums up to time t;N1(t) is a homogeneous Poisson pro
ess(HPP) with intensity λ1 > 0 (EN1(t) = λ1t, N1(0) = 0) that, for any
t > 0, determines the number of premiums 
harged over the time interval
(0, t]; C1, C2,. . . are independent identi
ally distributed (IID) randomvariables with a distribution fun
tion G(y) (G(0) = 0, EC1 = n < ∞)that determine the premium sizes and are assumed to be independent of
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N1(t); and the se
ond sum is the aggregate 
laims; N(t) is a HPP withintensity λ > 0 (EN(t) = λt, N(0) = 0) that, for any t > 0, determinesthe number of 
laims over the time interval (0, t]; Z1, Z2,. . . are IIDrandom variables with a distribution fun
tion F (x) (F (0) = 0, EZ1 =
m < ∞) that determine the 
laim sizes and are independent of N(t).The aggregate premium and aggregate 
laim pro
esses are also assumedto be independent.Let now the surplus be invested 
ontinuously in sto
ks with pri
esdes
ribed by the sto
hasti
 di�erential equation (SDE) dSt = St(a dt+
b dwt), t ≥ 0. Here, St is the sto
k pri
e at time t, 0 < a is theexpe
ted sto
k return rate, 0 < b is the volatility parameter, and {wt}is a standard Wiener pro
ess, or a Brownian motion.Then the dynami
s of the surplus (resulting risk pro
ess) is des
ribedby the initial value problem for an SDE:

dXt = Xt (a dt+ b dwt) + dRt, t ≥ 0, X0 = u. (2)Here, Xt is the portfolio value at time t and Rt is the risk pro
ess (1).As a measure of the solven
y of an insuran
e 
ompany, we usethe survival probability (SP) ϕ(u) (as a fun
tion u) in in�nite time:
ϕ(u) = P {Xt ≥ 0, t > 0}, where X0 = u for u ≥ 0; for u < 0, we set
ϕ(u) ≡ 0.The equation for ϕ(u) of the resulting risk pro
ess (2) has the form:

(b2/2)u2ϕ′′(u) + auϕ′(u) = λ
[
ϕ(u)−

∫ u

0 ϕ(u − x)dF (x)
]
+

+λ1
[
ϕ(u)−

∫∞
0 ϕ(u + y)dG(y)

]
, u ∈ R+.2. Assuming that the premium and 
laim sizes have exponentialdistributions, F (x) = 1−exp (−x/m), G(y) = 1−exp (−y/n), m,n > 0,we formulate the 
onstrained singular nonlo
al problem (see [1,3℄):

(b2/2)u2ϕ′′(u) + auϕ′(u)− λ[ϕ(u)− (Jmϕ)(u)]−

−λ1[ϕ(u)− (Inϕ)(u)] = 0, u > 0,
(3)

| lim
u→+0

ϕ(u)| <∞, lim
u→+0

[uϕ′(u)] = 0, (4)
(λ+ λ1) lim

u→+0
ϕ(u) = λ1(Inϕ)(0), (5)

0 ≤ ϕ(u) ≤ 1 ∀u ∈ R+, (6)
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lim

u→+∞
ϕ(u) = 1, lim

u→+∞
ϕ′(u) = 0. (7)Here, Jm and In are Volterra and non-Volterra integral operators,respe
tively,

(Jmϕ)(u) =
1

m

∫ u

0

ϕ(u− x) exp (−x/m)dx,

(Inϕ)(u) =
1

n

∫ ∞

0

ϕ(u + y) exp (−y/n)dy,where Jm, In: C[0,∞) → C[0,∞) and C[0,∞) is the linear spa
e of
ontinuous bounded fun
tions on R+.The theorem stated below follows from the results of [1�3℄.Theorem. Let all the parameters a, b2, n, m, λ, λ1 be �xed positive
onstants, and let the sto
k reliability 
ondition be satis�ed: 2a/b2 > 1.Then the following assertions hold:(I) The 
onstrained singular nonlo
al problem (3)�(7) has a uniquesolution ϕ(u), it is a nonde
reasing fun
tion on R+ and indeeddetermines the SP in the 
onsidered insuran
e model.(II) As u → +0, the behavior of the solution derivatives depends onthe relations between the parameters in parti
ular on a sign of the "riskfa
tor" ir = a(m− n) + λ1n − λm: (1) If λ + λ1 > a, then there existsa �nite limu→+0 ϕ
′(u) = D1; moreover, (a) | limu→+0 ϕ

′′(u)| <∞ if andonly if λ + λ1 > b2 + 2a; more pre
isely, in this 
ase limu→+0 ϕ
′′(u) =

D1D2 = −D1 ir/[mn(λ+ λ1 − b2 − 2a)], so that, if D1 > 0, then D2 ≤ 0for ir ≥ 0 and D2 > 0 for ir < 0; (b) if λ + λ1 ≤ b2 + 2a, then ϕ′′(u)is unbounded, but integrable at zero. (2) If a ≥ λ+ λ1, then ϕ′(u) is notbounded as u→ +0, but remains integrable at zero.(III) For large u, the solution ϕ(u) 
an be represented as
ϕ(u) = 1−K u1−2a/b2 [1 + o(1)], u→ ∞,where K > 0 is a 
onstant (in general the value of K 
annot be foundby lo
al analysis methods).(IV) If λ + λ1 > b2 + 2a and ir < 0, then ϕ′(u) rea
hes a positivemaximum at some point u = ũ > 0, while the solution ϕ(u) has anin�e
tion at this point (it is the most risk 
ase).The study of this problem demonstrates that investments in riskyassets for small and large IS values have opposite e�e
ts. For large ISvalues, the use of risky assets at a 
onstant investment portfolio stru
ture
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e and risk-managementis not favorable from the point of view of survival, while, for small ISvalues, risky assets are an e�e
tive tool for minimizing the overall riskand, hen
e, for in
reasing the solven
y of the insurer.Referen
es1. Belkina T.A., Konyukhova N.B., and Kuro
hkin S.V. Singularboundary value problem for the integrodi�erential equation in aninsuran
e model with sto
hasti
 premiums: Analysis and numeri
alsolution// Comput. Math. Math. Phys. 2012. V. 52. � 10.P. 1384�1416.2. Belkina T.A. Risky investment for insurers and su�
ien
ytheorems for the survival probability// Markov Pro
esses Relat.Fields. 2014. V. 20. P. 505�525.3. Belkina T.A., Konyukhova N.B., and Kuro
hkin S.V. Dynami
alinsuran
e models with investment: Constraint singular problemsfor integrodi�erential equations// Comput. Math. Math. Phys.2016. V. 56. � 1. P. 47�98.Risky investments and survival in the dualrisk modelT.A. Belkina*, N.B. Konyukhova**, and B.V. Slavko****Central E
onomi
s and Mathemati
s Institute of RAS,**Dorodni
yn Computing Center of RAS FRC CSC of RAS,***National Resear
h University - Higher S
hool of E
onomi
s,Mos
ow, RussiaWe 
onsider the dual risk model (see, e.g., [1℄), where the surplus orequity of a 
ompany (in the absen
e of investments) is of the form
Rt = u− ct+

N(t)∑

k=1

Zk, t ≥ 0. (1)Here Rt is the surplus of a 
ompany at time t ≥ 0; u is the initialsurplus, c > 0 is the rate of expenses, assumed to be deterministi
 and�xed; N(t) is a homogeneous Poisson pro
ess with intensity λ > 0 that,for any t > 0, determines the number of random revenues up to the time
t; Zk (k = 1, 2, ...) are independent identi
ally random variables with adistribution fun
tion F (z) (F (0) = 0, EZ1 = m < ∞) that determinethe revenue sizes and are assumed to be independent of N(t).
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e and risk-management 131Let now the whole surplus be 
ontinuously invested into risky assetof whi
h pri
e St follows the geometri
 Brownian motion
dSt = µStdt+ σStdBt, t ≥ 0,where µ is the expe
ted return rate, σ is the volatility, Bt is a standardBrownian motion.Then the resulting surplus pro
ess Xt is governed by the equation

dXt = µXtdt+ σXtdBt + dRt, t ≥ 0, (2)with the initial 
ondition X0 = u, where Rt is de�ned in (1).Denote ϕ(u) = P (Xt ≥ 0, t ≥ 0) the survival probability (i.e., theprobability that bankrupt
y will never happen).The in�nitesimal generator A of the pro
ess Xt has the form
(Af)(u) = 1

2
σ2u2f ′′(u) + f ′(u)[µu− c]− λf(u) + λ

∫ ∞

0

f(u+ z) dF (z),for any fun
tion f from a 
ertain sub
lass of the spa
e C2(R+) of real-valued, twi
e 
ontinuously di�erentiable on (0,∞) fun
tions.For the 
ase of the exponential revenue sizes, we establish thefollowing statement.Theorem. Let F (z) = 1− exp (−z/m), all the parameters µ, σ2, m,
c, λ be �xed positive 
onstants, and let the sto
k reliability 
ondition besatis�ed: 2µ/σ2 > 1. Then the following assertions hold:(I) the survival probability ϕ(u) is the solution to the followingsingular boundary value problem for the integro-di�erential equation(IDE) with non-Volterra integral operator:

(Aϕ)(u) = 0, u > 0, (3)
lim

u→+0
ϕ(u) = 0, lim

u→∞
ϕ(u) = 1; (4)(II) this solution is unique and satis�es the 
onditions

0 ≤ ϕ(u) ≤ 1, u ∈ R+,

0 < lim
u→+0

ϕ′(u) <∞;(III) the following asymptoti
 representations are valid:
ϕ(u) ∼ D1

(
u+

∞∑

k=2

Dku
k/k

)
, u ∼ +0,
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e and risk-managementwhere D1 = ϕ′(+0), D2 = (µ− λ+ c/m) /c,

D3 =
[
D2(2µ+ σ2 − λ+ c/m)− µ/m

]
/(2c),

Dk+1 = [Dk(k(k − 1)σ2/2 + µk − λ+ c/m)−
−Dk−1((k − 2)σ2/(2m) + µ/m)]/(kc), k = 3, 4, . . . ,and

ϕ(u) = 1−Ku1−2µ/σ2

(1 + o(1)), u→ ∞, (5)where K > 0 is a 
onstant;(IV) as u → +0, the behavior of the solution derivatives dependson the relations between the parameters, in parti
ular on a sign of the
oe�
ient ir = (λ − µ)m − c: (1) if ir ≥ 0, then limu→+0 ϕ
′′(u) ≤ 0,moreover, the solution ϕ is 
on
ave on R+; (2) if ir < 0, then

limu→+0 ϕ
′′(u) > 0, the solution ϕ is 
onvex in a some neighborhood ofzero and has an in�exion point.For the 
orresponding results to the 
lassi
al Cram�er-Lundberg riskmodel, see, e.g., [2℄. The asymptoti
 representation (5) for the survivalprobability of the pro
ess (2) (in the dual risk model) with exponentialdistribution of the revenue sizes was obtained earlier in [3℄, where therenewal theory was used to obtain some upper and lower asymptoti
bounds for the ruin probability. The regularity of the survival probabilitywas studied in [3℄ using a method based on integral representations. Notehere that the dual model 
ase is rather di�erent from the 
lassi
al 
asebe
ause the 
hange of two signs to the opposite ones in the equationde�ning the dynami
s of the reserve leads to spe
ial te
hni
al 
ompli-
ations (see [3℄ in details). We use other approa
h based on so 
alledsu�
ien
y theorem for the survival probability and the existen
e theoremfor the 
orresponding singular problems for IDEs (see [4℄). This uni�edapproa
h eliminates need to proof regularity of the survival probability aswell as to use its upper and lower bounds. Moreover, the solving of abovesingular problem for IDE leads to 
al
ulation of the survival probabilityon all non-negative semi-axis. We redu
e the problem (3),(4) to a 
ertaininitial problem from in�nity for some se
ond order ordinary di�erentialequation with respe
t to the derivative of the survival probability witha normalizing 
ondition. As a result of 
al
ulations, we 
on
lude inparti
ular that if the value of safety loading (λm − c) in the model (1)is negative or su�
iently small and the surplus is small too, then theuse of the risky investments allows to in
rease signi�
antly the survivalprobability.
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es1. Albre
her H., Bades
u A., and Landriault D. On the dual riskmodel with tax payments// Insuran
e Math. E
onom. 2008. V. 42.P. 1086�1094.2. Belkina T.A., Konyukhova N.B., and Kuro
hkin S.V. Dynami
alinsuran
e models with investment: Constraint singular problemsfor integro-di�erential equations// Comput. Math. Math. Phys.2016. V. 56. � 1. P. 47�98.3. Kabanov Yu. and Pergamensh
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ien
y theoremsfor the survival probability//Markov Pro
esses Relat. Fields. 2014.V. 20. P. 505�525.Optimization of marketing strategy of a �rmwith multiple distribution points of goodsD.V. Denisov and V.V. LatiyLomonosov Mos
ow State University, Mos
ow, RussiaWe present the mathemati
al model of a �rm selling 
ertain produ
t.The feature of this �rm is the stru
ture: the �rm is divided into severaldistribution units (for example, department stores) ea
h of whi
h aimsto a
hieve the best sales performan
e in 
omparison with other units.Ea
h point has its own marketing budget, approved by the head o�
e,whi
h 
an not ex
eed the total marketing budget. The overall aim of the
ompany is ¾fair¿ development of all units. Hen
e, there is the followingproblem of the budget allo
ation for all units i in the set A:
{

pDi(c)− ci → max
ci∑

i∈Aci ≤ C0where p is the pri
e of produ
t, Di(c) and ci are the demand for produ
tand 
ommer
ial expenses for unit i a

ordingly, C0 is the budget. Thus,there is a kind of 
ompetition between units for share of the budget.The main results of this paper are 1) the proof that there is the uniquespe
ial solution of des
ribed problem and 2) the proof that the problemof ¾fair¿ marketing budget allo
ation is equivalent to the problem ofmaximizing the total pro�t:
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{ ∑

i∈A(pDi(c)− ci) → max
c=(ci)i∈A∑

i∈Aci ≤ C0

.Referen
es1. von Heusinger A., Kanzow C. Optimization reformulations ofthe generalized Nash equilibrium problem using Nikaido�Isoda-type fun
tions // Te
hni
al Report, Institute of Mathemati
s,University of Wurzburg, Wurzburg, 2006.2. Bass F.M., Krishnamoorthy A., Prasad A., Sethi S.P. Generi
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Various appli
ations of OR
The two-level model of environmentalprote
tionV.A. Gorelik and T.V. ZolotovaDorodni
yn Computing Centre, FRC CSC RAS, Finan
ial Universityunder the Government of the Russian Federation, Mos
ow, RussiaThe proposed regulating me
hanisms use uni�ed and di�erentiatedenvironmental payments under the presen
e or absen
e of quotas and�nes 
ontrol.Suppose that the regional 
enter may regulate e
ologi
al paymentrates p = (p1, . . . , pm) (redu
tion of payment may be a result ofo�setting funds or budget exemptions), where pj is fee for a negativeimpa
t on unit volume yj of j-th pollutant, j=1, . . . , m. Assume thatthe volume of the pollutant is proportional to the value of the relevantprodu
tion fa
tor yij = γijxi =

∑S
s=1 γijsxis, where γij = (γij1, . . . ,

γijs, . . . , γijS) is the ve
tor of proportional 
oe�
ients for j -th pollutant,
γis = (γi1s, . . . , γijs, . . . , γims) is the ve
tor of proportional 
oe�
ientsof all pollutants for i-th enterprise, applying s-th produ
tion fa
tor,
xi = (xi1, . . . , xis, . . . , xiS) is the ve
tor of produ
tion fa
tor of i-th enterprise. Let Ki, i=1, . . . , n, be �nan
ial resour
es of enterprises,
q = (q1, . . . , qS) be the ve
tor of pri
es of produ
tion fa
tors (resour
es).Then the set of 
ontrol of i-th enterprise is Xi(p) = {xi|Pxi ≤ Ki, xi ≥
0}, i=1, . . . , n, where

P = (q1 +
m∑

j=1

pjγij1, ..., qs +
m∑

j=1

pjγijs, ..., qS +
m∑

j=1

pjγijS).Output of ea
h enterprise is de�ned by the ve
tor produ
tion fun
tion
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fi(xi), satisfying 
onditions fi(0) = 0, ∂fi(xi)

∂xis
> 0, ξ ∂2fik(xi)

∂x2
i

ξ < 0 ∀ξ 6=
0, where fik(xi) is k -th 
omponent of the ve
tor fun
tion fi(xi).If 
i is the ve
tor of pri
es for all produ
ts of i-th enterprise, thenthe problem of maximizing its gross in
ome is

Gi(xi) = Aifi(xi) → max
xi∈Xi(p)

, (1)Its solution is the optimal strategy of the i-th enterprise x0i (p).Let the 
enter seeks to in
rease the total gross in
ome of enterprises,i.e. the target fun
tion of the 
enter is F (xi) =∑n
i=1 αiGi(xi), where αiare positive weights, for example, tax payments to the regional budget. Itis also assumed that the 
enter interests in a rational use of the region'sresour
es (energy, natural, labor). Then the problem of the 
enter is

F (x0(p)) =
n∑

i=1

αiGi(x
0
i (p)) → max

p|
∑

n
i=1 x0

i (pi)≤X
, (2)where X is the limit of resour
es amount. The solution of problem (2)gives the optimal strategy of the 
enter p0.Let's 
onsider the problem of 
entralized s
heme 
ontrol

F (x) =

n∑

i=1

αiGi(xi) → max
x|

∑
n
i=1 xi≤X

, (3)its solution is ve
tor x∗i = (x∗i1, . . . , x
∗
is, . . . , x

∗
iS).We introdu
e the Lagrange fun
tion for problem (3) L(x, µ) =

=
∑n

i=1 αiGi(xi) + µ(X −∑n
i=1 xi), where µ = (µ1, . . . , µS) is theve
tor Lagrange multiplier, and 
onsider for i-th element of lower-levelthe system of linear equations with unknown ki, pi = (pi1, . . . , pim):

kiµs = qs +

m∑

j=1

pijγijs, s = 1, ..., S, Ki = kiµx
∗
i . (4)Denote p0i environmental payments ve
tor for i-th enterprise, de�nedby legislation.Theorem 1. Let fun
tions Gi(xi), i=1, . . . , n, be 
ontinuous,stri
tly 
on
ave with respe
t to all their variables, and have 
ontinuouspositive derivatives with respe
t to xis, the system of linear equations (4)has positive solution su
h that pi ≤ p0i, i = 1, . . . , n. Then by 
hoosingdi�erentiated environmental payments pi for lower-level elements in
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ations of OR 137problem (2) the 
enter provides the global maximum of its 
riterion, i.e.a
hieves perfe
t re
on
iliation of interests.Assume that the 
enter has the ability to assign only uni�ed environ-mental p and additionally permissible levels of pollution (quotas) and�nes for ex
eeding these quotas. The amount of �nes zij per unit for theex
ess of j -th type of pollution and quotas βi = (βi1, . . . , βij , . . . , βim)determined by the 
enter for ea
h enterprise satisfy 
onditions zij ≥ 0,
βi ≥ 0, i=1, . . . , n,∑n

i=1 βij = Bj , where Bj � is �xed value, means themaximum permissible level of pollution by j -th indi
ator for the wholeregion. Denote zi = (zi1, . . . , zim), z = (z1, . . . , zn), β = (β1, . . . , βi,
. . . , βn). The target fun
tion of the 
enter is F (x) =∑n

i=1 αiGi(xi).As a �ne fun
tion we take the total ex
ess on all types of pollution.Then the problem of i-th enterprise is
Aifi(xi) → max

xi∈X′
i(p,zi,βi)

, (5)
X ′

i(p, zi, βi) = {xi|Pxi +
m∑

j=1

zij max(0, γijxi − βij) ≤ Ki, xi ≥ 0}.We introdu
e the ve
tor of the maximum permissible levels ex
eeds
wi = (wi1, . . . , wim). Then problem (5) takes form

Gi(xi) = Aifi(xi) → max
(xi,wi)∈Xi(p,zi,βi)

, (6)
Xi(p, zi, βi) = {(xi, wi) ≥ 0|γijxi − βij ≤ wij ,

Pxi +
∑m

j=1 zijwij ≤ Ki, j = 1, ..., m}. Let x0i (p, zi, βi) be the solutionof problem (6). The problem of the 
enter optimal 
ontrol is
n∑

i=1

αiGi(x
0
i (p, zi, βi)) → max

(p,z,β)∈Q
, (7)

Q = {(p, z, β) ≥ 0| ∑n
i=1 βij = Bj , j = 1, ..., m,

∑n
i=1 x

0
i (p, zi, βi) ≤

X}. Denote the 
enter optimal 
ontrol (p0, z0, β0).We introdu
e the Lagrange fun
tion for problem (7)
L̃i(xi, wi, λi1, λi2) = Gi(xi, wi, p, zi, βi)+λi1(Ki−Pxi−

∑m
j=1 zijwij)+∑m

j=1 λij2(wij + βij − γijxi), where λi1 ≥ 0, λi2 ≥ 0 are Lagrangemultipliers, λi2 is m-dimensional ve
tor.The problem of 
entralized 
ontrol has the form
n∑

i=1

αiGi(xi)) → max
x∈Q1

, (8)
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Q1 = {x|

n∑

i=1

γijxi ≤ Bj, j = 1, ..., m,

n∑

i=1

xi ≤ X}.Denote the solution of problem (8) by x∗i = (x∗i1, . . . , x
∗
is, . . . , x

∗
iS).Consider the system of equations:

λi1Px
∗
i +

∑m
j=1 λij2(βij − γijx

∗
i ) = λi1Ki, λi1Ps = µ1s/αi,∑m

j=1 λij2γijs = (
∑m

j=1 µ2j

∑n
i=1 γijs)/αi = 0,

i = 1, ..., n, s = 1, ..., S.

(9)Denote the �xed ve
tor of utmost environmental payments, de�nedby the legislation, by p0.Theorem 2. Let fun
tions Gi(xi), i=1, . . . , n, be 
ontinuous,stri
tly 
on
ave with respe
t to all their variables, and have 
ontinuouspositive derivatives with respe
t to xis, the system of linear equations(9) has positive solution λ1, λi2, p, β su
h that p ≤ p0. Then by 
hoosinguni�ed environmental payments p, quotas β and �nes z and for lower-level elements in problem (9) the 
enter provides the global maximumof its 
riterion, i.e. a
hieves perfe
t re
on
iliation of interests.Dynami
 model of 
olle
tive de
ision makingI.V. KozitsinMos
ow Institute of Physi
s and Te
hnology, Mos
ow, RussianFederationIn this work the already 
onstru
ted in [2℄ model is generalizedon 
ontinuous time 
ase and applied to some elementary examples. In[1℄,[2℄ the author speaks about model, des
ribing pro
ess of 
olle
tivede
ision making. He �xed one state and 
rowd of people; everybodyfrom this 
rowd 
an go to this state or 
an remain. This state we will
all main state. Everybody has his own opinion about swit
h to thisstate generated before 
ommuni
ation with other people. This opinionwill estimated by α−probability of preparedness to go to the main state.After 
ommuni
ation α will 
hange. This new probability we will 
all
p. Also everybody has his own 
hara
teristi
s des
ribing his individualfeatures. It means that member numbered i is des
ribed by:

• µi−probability of independent de
ision making;
• λij−probability of following member numbered j in de
isionmaking;
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• αi;

• pi.Using this parameters author 
reated the main system of equations:
pi = µiαi + (1 − µi)

N∑

j=1

λijpj , i = 1, .., N. (1)Parameters λij are bounded by:
N∑

j=1

λij = 1, λii = 0, i = 1, ..N. (2)Here pi are variables. System (1) is generalized on 
ontinuous time 
ase:
dpi(t)

dt
= µi(αi−pi(t))+(1−µi)

N∑

j=1

λij(pj(t)−pi(t)), i = 1, .., N. (3)In system (3) αi are initial 
onditions and pi(t) are 
hanging during thetime. So we get Cau
hy problem. This Cau
hy problem has a unique
orre
t (pi(t) ∈ [0, 1]) solution. If µi > 0 ∀i, time-independent solutionsof this system (3) are asymptoti
ally stable. (3) is applied in quiteordinary 
ase: when 
rowd of people 
an be separated on three groups.First has negative opinion about main problem, se
ond has positiveopinion about main problem. The rest of people are not sure. As a resultI got solutions quite good 
oordinated with reality.Referen
es1. Krasnoshekov P.S., Petrov A.A. Prin
iples of the 
onstru
tion ofmodels // M.: Fasis, 2000.2. Krasnoshekov P.S., The simplest mathemati
al model behavior.The psy
hology of 
onformism // Mathemati
al modeling. 1998.10(7). P. 76�92.
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ations of ORSo
ialization as an e�e
tive me
hanism ofstrategy alteration from individual to
ooperative: some psy
hophysiologi
alaspe
ts∗I.S. Menshikov1, 2, O.R. Menshikova1, A.O. Sedush1, T.S. Babkina1, 3,and E.M. Lukinova3
1MIPT, 2CC RAS, 3Skolte
h, Mos
ow, RussiaThe 
lassi
al e
onomi
 theory suggests that e
onomi
 agents arerational, i.e. they make de
isions a

ording the maximization of theirown pro�t. The experimental e
onomi
s allows 
he
king the validity ofthis statement in laboratory 
onditions. People evade rational strategiesin some situations and 
hoose the ones that lead to less pro�t at thisparti
ular moment, but have the perspe
tive bene�t for the so
ietyin general. These strategies we 
all 
ooperative, proso
ial and leadingto equality. Sin
e the 
hoi
e of 
ooperative strategies 
ontradi
ts therational 
hoi
e theory the question arises: what motivates some peoplestill follow the 
ooperative or proso
ial strategies? An important questionthat still remains: how 
an we a

omplish the strategy alteration fromindividual and rational to 
ooperative and proso
ial?It is known from the so
ial psy
hology that not all de
isions aremade a

ording to the expe
ted future reward. There is some moralsatisfa
tion from the fa
t that the trust is established in group and allparti
ipants re
eive the same payo�. Thus, we assume that the utilityfun
tion depends on the so
ial 
omponent that 
overs the dissatisfa
tionof re
eiving fewer bene�ts.The MIPT Experimental E
onomi
s Laboratory and Skolte
h areused to 
arry out all experiments. The treatments 
omprise knowledgefrom experimental e
onomi
s and so
ial psy
hology [1℄. Ea
h experiment
onsists of a di�erent set of 12 students, pre-sele
ted before theexperiment to be unfamiliar with one another. In the laboratory, westudied the nature of su
h so
ial qualities of a person as 
ooperativness,fairness, trust, gratitude in the groups so
ialized di�erently. We usedthe following 2x2 games: Prisoners' Dilemma, Ultimatum Game, andTrust Game. The resear
h goal is to �nd and study the me
hanism thate�e
tively alter the parti
ipants strategies from individual to 
ooperativewithout using so
ial or material punishments. In 
ourse of our studyingwe dis
overed su
h a me
hanism - a group so
ialization.

∗This resear
h is supported by the grant RFFI 16-01-00633A.
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ations of OR 141Ea
h experiment is divided into 3 
onse
utive phases: anonymousgame phase in group of 12, so
ialization phase, and so
ialized game phasein group of 6 or 4. We use di�erent variants of so
ialization. Howeverwe always in
lude the introdu
tion step and division parti
ipants on twoor three equal groups and some teamwork in newly formed groups. Thegame phases 
onsist of a number of periods in a randomly formed pairs.On the �rst phase pairs form from the total sample of parti
ipants, onthe third phase pairs form within newly formed groups.To study 
hanges in people's attitudes after the so
ializationwe use an interdis
iplinary approa
h 
ombining methods fromexperimental e
onomi
s, so
ial psy
hology and psy
hophysiology. Duringthe laboratory experiment we measure the stabilograms [2℄ and RR-intervals of all parti
ipants. These data are 
ompared with ea
h other,with the behavioral 
hara
teristi
s and data from psy
hologi
al tests [3-4℄. Results.1. So
ialization promotes alteration of the parti
ipants' strategiesfrom individual to 
ooperative.2. The e�e
t of so
ialization is di�erent between sexes.The initial (before so
ialization) level of 
ooperation among females isequal or higher than among males (on average δ = .02, Nm = 202, Nf =
122, wil
oxon-test, p-value = .05). Whereas after the so
ialization theper
entage of 
ooperation among males is higher than among females (onaverage δ = .15, Nm = 202, Nf = 122, wil
oxon-test, p-value = .001).3. The psy
hologi
al type e�e
ts the 
hange of so
ial indi
ators afterso
ialization. We �nd psy
hologi
al types with the highest per
entage ofthe transition from individual strategies before to 
ooperative strategiesafter so
ialization.4. The relationship between energy and entropy of the parti
ipantsduring an e
onomi
 experiment, stress levels (an indi
ator, whi
h
an be derived from measurements of RR-intervals) and psy
hologi
alpersonality type is established.Referen
es1. Berkman E.T., Lukinova E., Menshikov I., Myagkov M. So
ialityas a Natural Me
hanism of Publi
 Goods Provision. PLoS ONE,10(3), 2015, e0119685.2. Menshikov I.S. Laboratory analuses of the 
ontext in�uen
es on thede
ision making. // Pro
eedings of MIPT-2014.-6(4), pp 67-77.
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ations of OR3. Menshikova O.R., Menshikov I.S., Sedush A.O. Laboratory studiesof the di�eren
es in the behavior of men and women beforeand after so
ialization. Oxford Journal of S
ienti�
 Resear
h,2015, No.1. (9) (January-June). Volume III. "Oxford UniversityPress 2015, pp. 339-346.4. Menshikova O.R., Menshikov I.S., Sedush A.O. In�uen
e of threetypes of so
ialization on the behavior of men and women in so
ialand e
onomi
 experiments. Pro
eedings of MIPT, 2015, pp 56-65.The asymptoti
 solution of a singularlyperturbed initial boundary value problemK.O. SemenovDorodni
yn Computing Center of FRC IC RAS, Mos
ow, RussiaThis work involves the problems of solving the tasks arising in thestudy and des
ription of the pro
esses o

urring in the laser targets [1℄.An understanding of su
h pro
esses makes possible the implementationand 
ontrol of te
hnologi
al pro
edures of thermo-nu
lear synthesis fromthe 
reation of laser target to their delivery to the pla
e of ignition andmanagement the laun
h of a thermonu
lear rea
tion. The following isa mathemati
al model of the single-layer shells �lling with gas, whi
his redu
ed to linear singularly perturbed initial-boundary value problemof paraboli
 type [2℄. Pro
esses su
h as 
ooling of the target and theproblem of degradation of the fuel layer by heating the target in therea
tor 
hamber by ele
tromagneti
 radiation [3℄ are redu
ed to a similar
lass of problems.Below we going to state the initial boundary value problem for thefun
tion u(x, t), x ∈ [0, 1], t > 0, that satis�es the paraboli
 equation
ε
∂u

∂t
=

1

(1− δx)
2

∂

∂x
(1− δx)

2 ∂u

∂x
. (1)When formulating the problem the boundary 
onditions are one of themost important fa
tor. Let us when x = 1

u(1, t) = µ(t), u(1, 0) = µ(0) = b, (2)
b - determined value and µ - unknown fun
tion, whi
h satis�es thefollowing ordinary di�erential equation

dµ

dt
= −α∂u(x, t)

∂x
|x=1 , α > 0. (3)
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ations of OR 143When x = 0 let
u(0, t) = γ · µ(t) + f(t), γ = const ≥ 0 (4)here f(t) - determined time fun
tion. Initial 
onditions are determinedby next statement

u(x, 0) = U(x), (5)
ompatibility 
onditions are:
U(1) = b , U(0) = γb+ f(0). (6)Using the work [4℄ resear
h methods we are getting the above statedproblem de
ision in the following theorem form.Theorem. The initial boundary value problem (1)-(6) 
an be solvedand the solution 
an be des
ribed as follows

u(x, t) =

(
γ +

κx

1− δx

)
µ(t) +

(1− x)

(1− δx)
f(t)+

+
1

(1− δx)

[
vs

(
x,
t

ε

)
+ εw

(
x,
t

ε

)]
,where

vs

(
x,
t

ε

)
=

∞∑

n=1

cn exp

(
− π2n2t

ε

)
sin(πnx),and

µ(t) = µ0(t)+εM

(
t

ε
, ε

)
= e−β1t


b+ β

t∫

0

eβ1sf(s)ds


 b+εM

(
t

ε
, ε

)
.Note that fun
tions M,w are uniformly bounded and the initial
onditions dis
repan
y is 
ompensated with fun
tion vs

(
x, t

ε

) and isqui
kly de
reased to zero while t in
reasing.In 
on
lusion, we should note one signi�
ant fa
t that values ofparameter γ de�ne the pro
ess a) γ = 1 �lling of target with gas; b)
γ = 0 the pro
ess of 
ooling the gas inside the target.
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es1. Aleksandrova I.V., Belolipetskii A.A., Koresheva E.R. Currentinertial thermonu
lear synthesis program and state of 
ryogeni
fuel targets problem // The journal "Bulletin of the RussianA
ademy of Natural S
ien
es 2007. � 2. P. 15�20.2. Aleksandrova I.V., Belolipetskii A.A. Mathemati
al models for�lling polymer shells with a real gas fuel. // Laser and Parti
leBeams, 1999. Vol. 17, � 4. P. 701�712.3. Belolipetskii A.A., Malinina E.A., Semenov K.O. Mathemati
almodel of fuel layer degradation when the laser target isheated by thermal radiation in the rea
tor working 
hamber //Computational Mathemati
s and Modeling,2010. Vol. 21, � 1.P. 1�17.4. Belolipetskii A.A., Ter-Krikorov A.M. The solution of a singularlyperturbed initial-boundary value problems for linear paraboli
equations //Works of MIPT, 2011. Vol. 3, � 1. P. 14�17.



Game-theoreti
 models
Sear
h numbers on graphs of blo
k stru
tureT.V. Abramovskaya and E.E. RzhevskayaSPbSU, Saint Petersburg, RussiaWe 
onsider a problem of dis
rete graph sear
hing. Invisible fugitive,whose movements are unpredi
table, moves on graph. There is a set ofsear
hers, whose goal is to �nd the fugitive. The 
onditions of 
apturefugitive depend on type of sear
h. In ea
h 
ase �nding the minimum k,su
h that k sear
hers 
an 
apture any fugitive in graph G, is the goal.This minimum k is 
alled the sear
h number of graph G.This problem 
an be formulated di�erently. The edge is 
lear if itis guaranteed no fugitive on this edge, else the edge is 
ontaminated.Initially all graph's edges are 
ontaminated and the sear
hers' goal is to
lear all graph's edges. There are three possible sear
h steps : to pla
ea sear
her on a node, to remove a sear
her from a node and to movea sear
her along an edge. A sequen
e of sear
h steps that results in alledges being 
lear, is a sear
h strategy. A strategy is monotone if nore
ontamination ever o

urs. If the set of 
lear edges always indu
es a
onne
ted subgraph, a sear
h strategy is 
onne
ted. Conne
ted sear
hsimulates a situation, when sear
hers want to have a safe transmission
hannel.Three types of sear
h are 
onsidered: edge sear
h, mixed sear
h and
onne
ted mixed sear
h. Their sear
h numbers are denoted by s(G),mixs(G), 
mixs(G). The �rst formulation of edge sear
hing problem wasgiven by N.N. Petrov in [1℄ and T. Parsons in [2℄. A sear
her musttraverse the edge from one end�point to the other to 
lear the edge.The 
onditions of 
learing in mixed sear
h 
onsist of the 
ondition inedge sear
h and a new opportunity, whi
h is to pla
e sear
hers on the
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 modelsboth edge's end�points. A 
lear edge e = (u1, u2) is preserved fromre
ontamination if one of these statements is true for ui, i = 1, 2: eithersear
her remains in ui, or all other edges in
ident to ui are 
lear. In otherwords, a 
lear edge e is re
ontaminated if there exists a path between eand 
ontaminated edge with no sear
her on any node of the path.Graph sear
hing problems are attra
tive for their 
orresponden
ewith 
lassi
al width�parametres, serving as a model for important appliedproblems, whi
h were des
ribed in [3℄, [4℄. Conne
tion between graphsear
hing and pebbling was found in [5℄. The relationships between sear
hnumbers was showed in [6℄. Let's mention several of them:
• mixs(G) − 1 6 pw(G) 6 mixs(G)

• mixs(G) 6 s(G) 6 mixs(G) + 1

• mixs(G) 6 cmixs(G)It is known, that it is enough to 
onsider monotone strategies if thegoal is to �nd s(G), mixs(G). In most 
ases, the 
lass of graphs that
an be 
leared by the edge sear
h strategy using at most k sear
hers isminor 
losed. This fa
t is true for the mixed sear
h, too. In 
ase of the
onne
ted mixed sear
h, there is a 
ounterexample given in [7℄ and itis proven that the 
lass of graphs that 
an be 
leared by the 
onne
tedstrategy using at most k sear
hers is not minor 
losed.We introdu
e a spe
ial 
lass of graphs to resear
h 
onne
tion betweenthe sear
h numbers s(G), mixs(G), cmixs(G). We propose de�nition ofa blo
k m× n. It is a graph that 
an be imagined su
h as a grid m× n,where m is the number of rows and n is the number of 
olumns. Ablo
k have a boundary, whi
h is the subgraph indu
ed with the set of allverti
es of degree less than 4. The boundary is divided into four parts(left, right, top and bottom) intuitively. For any blo
k G (size m × n)we show that s(G) = mixs(G) + 1 = cmixs(G) + 1 = min{m,n} + 1.Then we introdu
e an operation with two blo
ks B1 and B2 and 
all itby gluing. This operation means that all verti
es of one boundary's partof a blo
k B1 are merged with verti
es of one boundary's part of a blo
k
B2. Gluing of B1 and B2 is denoted by B1 ⊔ B2. Also we 
an de�ne aboundary of B1⊔B2 su
h as a subgraph, whi
h 
ontains boundaries of B1and B2 ex
ept merged verti
es whose degree was 3 in B1, B2. The gluingis intuitively generalized for any amount of blo
ks. Resulting graphs are
alled graphs of blo
k stru
ture. Now we 
an introdu
e a new blo
k sear
hon graphs of blo
k stru
ture. For blo
k sear
h only strategies, whi
h have
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 models 147a following property, are 
onsidered: on every steps there exists no morethan one blo
k, that have both 
lear and 
ontaminated edges ex
eptboundary's edges. The 
onditions of 
learing are equal to mixed sear
h.A blo
k sear
h number is denoted by bs(G).We resear
h gluing of two blo
ks B1 (m1×n1) and B2 (m2×n2). The�rst 
lass of resulting graphs 
ontains all graphs B1 ⊔B2, when the pairof verti
es of degree two is merged. Let m2 > m1 and all verti
es of rightboundary of B1 are merged with verti
es of left boundary of B2. For allgraphs in this 
lass it is showed that bs(G) = mixs(G) = cmixs(G) =
min{max{m1, n2},m2, n1+n2− 1}. The se
ond 
lass 
ontains the othergraphs B1 ⊔ B2. Without loss of generality, we assume that all verti
esof bottom boundary of B2 are merged with verti
es of top boundary of
B1. Let n2 < n1, then n1 = k − 1 + n2 + p − 1, where p − 1, k − 1are amount of top boundary's verti
es of B1, whi
h are situated leftand right of merged verti
es, and p > k. In this 
ase we show that
bs(G) = mixs(G) = cmixs(G) = min{max{2m1, n2},max{m1, n2 + k −
1}, n1,m1 +m2 − 1,m1 + n2}.Further we 
onsider operation deletion of the internal edges andverti
es of blo
k B1 (m1 × n1) from blo
k B2 (m2 × n2), where m2 >
m1, n2 > n1. For all resulting graph it is showed that mixs(G) =
cmixs(G) = min{M + m,m2, n2}, where m is the minimum numberof verti
es in a row (left and right parts) or in a 
olumn (bottom andtop parts) from boundary of deleted blo
k B1 to boundary of blo
k B2,
M is the maximum number of su
h verti
es.Referen
es1. Petrov N.N. A problem of pursuit in the absen
e of information onthe pursued // Di�erential Equations. 1982. V. 18, � 8, P. 1345�1352.2. Parsons T.D. Pursuit�evasion in a graph // Theory andappli
ations of graphs. Berlin: Springer. 1978. P. 426�441.3. Abramovskaya T.V., Petrov N.N. The theory of guaranteed sear
hon graphs // Di�erential Equations and Control Pro
esses. 2012.� 2 P. 9�65.4. Fomin F.V., Thilikos D.M. An annotated bibliography onguaranteed graph sear
hing // Theoreti
al Computer S
ien
e.2008. V. 399, � 3. P. 236�245.5. Kirousis L.M., Papadimitriou C.H. Sear
hing and pebbling //Theoreti
al Computer S
ien
e. 1986. V. 47, � 1. P. 205�218.



148 Game-theoreti
 models6. Boting Yang Strong-mixed Sear
hing and Pathwidth // Journal ofCombinatorial Optimization. 2007. V. 13, � 1, P. 47�59.7. Barriere L., Fraigniaud P., Santoro N., Thilikos D.M. Conne
tedand Internal Graph Sear
hing // In 29th Workshop on GraphTheoreti
 Con
epts (WG). Springer-Verlag. 2003. P. 34�45.Generalization of binomial 
oe�
ients tonumbers on the nodes of graphs∗A. Khmelnitskaya, G. van der Laan, and D. TalmanSaint-Petersburg State University, Russia,VU University Amsterdam, The Netherlands,Tilburg University, The NetherlandsThe topi
 of this work does not relate dire
tly to game theory,but the interest for this study is strongly in�uen
ed by our studyof Shapley-type solution 
on
epts for 
ooperative games with limited
ooperation introdu
ed by means of 
ommuni
ation graphs. If there areno restri
tions on 
ooperation, the 
lassi
al Shapley value assigns to ea
hplayer as a payo� the average of the players' marginal 
ontributions withrespe
t to all possible orderings of the players. However, in 
ase of limited
ooperation represented by a graph not all orderings of the players arefeasible, but only those that are 
onsistent with the graph. When thegraph is a line-graph, the numbers of feasible orderings starting fromea
h of its nodes are given by the binomial 
oe�
ients.The triangular array of binomial 
oe�
ients, or Pas
al's triangle, isformed by starting with an apex of 1. Every row of Pas
al's triangle
an be seen as a line-graph, to ea
h node of whi
h the 
orrespondingbinomial 
oe�
ient is assigned. We show that the binomial 
oe�
ient ofa node is equal to the number of ways the line-graph 
an be 
onstru
tedwhen starting with this node and adding subsequently neighboring nodesone by one. Using this interpretation we generalize the sequen
es ofbinomial 
oe�
ients on ea
h row of Pas
al's triangle to so-
alled Pas
algraph numbers assigned to the nodes of an arbitrary (
onne
ted) graph.We show that on the 
lass of 
onne
ted 
y
le-free graphs the Pas
algraph numbers have properties that are very similar to the properties of
∗The resear
h of Anna Khmelnitskaya was supported by RFBR (RussianFoundation for Basi
 Resear
h) grant �16-01-00713 and NWO (Dut
h Organizationof S
ienti�
 Resear
h) grant �040.11.516. Her resear
h was done partially during herstay at Vrije Universiteit Amsterdam and the University of Twente, the hospitalityof both universities is highly appre
iated.
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oe�
ients. We also show that for a given 
onne
ted 
y
le-freegraph the Pas
al graph numbers, when normalized to sum up to one, areequal to the steady state probabilities of some Markov pro
ess on thenodes. Properties of the Pas
al graph numbers for arbitrary 
onne
tedgraphs are also dis
ussed. Be
ause the Pas
al graph number of a nodein a 
onne
ted graph is de�ned as the number of ways the graph 
anbe 
onstru
ted by a sequen
e of in
reasing 
onne
ted subgraphs startingfrom this node, the Pas
al graph numbers 
an be seen as a measure of
entrality in the graph.Controlled dynami
sin multi
riteria optimization∗E.V. KhoroshilovaLomonosov Mos
ow State University, CMC Fa
ulty, Mos
ow, RussiaA mathemati
al model of terminal 
ontrol with two basi

omponents: a 
ontrolled dynami
s and a boundary value problem inthe form of multi
riteria equilibrium model, is 
onsidered. The boundaryvalue problem des
ribes a 
ontrolled obje
t situated in a equilibriumstate. Under the in�uen
e of external disturban
es the obje
t loses itsstate of stability and must be returned to equilibrium. The saddle pointapproa
h was used to do this, and the extraproximal method was appliedto �nd a solution. The 
onvergen
e of the method to solution was proved.Boundary value problem. A group of m parti
ipating 
ountries
reates a 
ommunity for the realization of some e
onomi
 proje
t. Itis assumed that by the time of the 
ommunity 
reation, the member
ountries have already identi�ed their interests and obje
tives in theproje
t, set types and amount of resour
es required to parti
ipate inintegration. Interests of ea
h of the parti
ipants are des
ribed by 
ostobje
tive fun
tions fi(x1), i = 1,m, whi
h are de�ned on a 
ommonset of resour
es X1 ⊆ Rn. Ea
h of parti
ipants wants to minimize the
ost of its 
ontribution to the overall proje
t. In the �rst approximation,this situation 
an be des
ribed as a simple multi
riteria optimizationproblem:
f(x∗1) ∈ ParetoMin{f(x1) | x1 ∈ X1}, (1)where f(x1) = (f1(x1), f2(x1), ..., fm(x1)) is a ve
tor 
riterion; 
onvexs
alar fun
tion fi(x1) is value of resour
es that must be entered in the

∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h (Proje
tNo.15�01�06045-a).
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ommunity by i-th parti
ipant to implement the proje
t. The problem(1) generates a set of solutions in the form of vast variety of Pareto-optimal points.Along with the individual interests of parti
ipants there exist alsogroup interests, for example, the 
ost of the whole proje
t. For di�erentPareto-optimal estimates this 
ost is di�erent. It is natural to 
hoosethe proje
t with a minimum value. Thus, it is ne
essary to formulate amathemati
al model that takes into a

ount both the individual interestsof ea
h parti
ipant and group (
olle
tive) interests of the 
ommunity.As a result, the following two-person game with Nash equilibrium wasproposed [1℄:
〈λ∗, f(x∗1)〉 ∈ Min{〈λ∗, f(x1)〉 | x1 ∈ X1}, (2)

〈λ− λ∗, f(x∗1)− λ∗〉 ≤ 0, λ ≥ 0. (3)Formulation of terminal 
ontrol problem.We add a 
ontrolleddynami
s to the problem (2),(3) and formulate the following 
ommondynami
 model with multi
riteria optimization boundary value problem:
d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, x(t0) = x0, (4)

x(t1) = x∗1 ∈ X1 ⊆ Rn, u(·) ∈ U, (5)

U = {u(·) ∈ Lr
2[t0, t1] | ‖u(·)‖2Lr

2
≤ C}, (6)where x∗1 is x1-
omponent of solution for multi
riteria equilibriumproblem (2),(3). Here D(t), B(t) are 
ontinuous matri
es, x0 is initial
ondition, x(t) ∈ ACn

2 [t0, t1] (linear variety of absolutely 
ontinuousfun
tions). The dynami
 model (2)-(6) des
ribes the transition of
ontrolled obje
t from the initial state x0 to a terminal state x(t1) = x∗1,whi
h is given impli
itly as the solution of (2),(3). We look for a 
ontrol
u∗(t) ∈ U su
h that the traje
tory x∗(t) has got by its right end to theappropriate 
omponent x∗(t1) of boundary value problem's solution.Saddle point approa
h to the problem. We asso
iate theproblem (2)-(6) with the saddle-point-type fun
tion, whi
h will play arole similar to the Lagrange fun
tion in 
onvex programming:

L(λ, ψ(t);x1, x(t), u(t)) =

= 〈λ, f(x1)−
1

2
λ〉+

∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t) − d

dt
x(t)〉dt, (7)
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+ × Ψn

2 [t0, t1], (x1, x(t), u(t)) ∈ X1 ×
ACn[t0, t1] ×U. In the 
ase of regular 
onstraints, the fun
tion (7) alwayshas a saddle point (λ∗1, ψ∗(·);x∗1, x∗(·), u∗(·)), whi
h is the solution of theproblem. Therefore, the problem (2)-(6) is redu
ed to �nding the saddlepoints of (7).Method to solve the problem. The dual extraproximal methodthat guarantees the 
onvergen
e to the solution of saddle point problem(2)-(6), has been applied [1℄:

λ̄k = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk1)−

1

2
λ〉 | λ ≥ 0

}
, (8)

ψ̄k(t) = ψk(t) + α

(
D(t)xk(t) +B(t)uk(t)− d

dt
xk(t)

)
, (9)

(xk+1
1 , xk+1(·), uk+1(·)) = argmin

{
1

2
|x1 − xk1 |2 +

+α〈λ̄k, f(x1)−
1

2
λ̄k〉+ 1

2
‖x(t)− xk(t)‖2 + 1

2
‖u(t)− uk(t)‖2 +

+ α

∫ t1

t0

〈ψ̄k(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt

}
, (10)

λk+1 = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk+1

1 )− 1

2
λ〉 | λ ≥ 0

}
, (11)

ψk+1(t) = ψk(t) + α

(
D(t)xk+1(t) +B(t)uk+1(t)− d

dt
xk+1(t)

)
, α > 0,

(12)where a minimum in (13) is 
omputed in all (x1, x(·), u(·)) ∈ X1 ×
ACn[t0, t1]×U. A similar approa
h was 
onsidered in [2℄.Theorem (on 
onvergen
e of the method). If the solution ofequilibrium problem (2)-(6) exists, fun
tions fi(x1), i = 1,m, are
onvex and subje
t to Lips
hitz 
ondition with 
onstant L, then thesequen
e generated by the dual extraproximal method (8)-(12) with theparameter α, satisfying the 
ondition 0 < α < α0, where α0 is a de�ned
onstant, 
ontains a subsequen
e that 
onverges to one of the solutions
(λ∗, ψ∗(·);x∗1, x∗(·), u∗(·)) of the problem. In this 
ase, the 
onvergen
ein 
ontrols is weak, the 
onvergen
es in phase and 
onjugate traje
tories(as well as in terminal variables) are strong.
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s // Trudy Instituta matematiki i mekhanikiUrO RAN. Yekaterinburg, 2015. V. 21, � 3. P. 20�29 (in Russian)2. Khoroshilova E.V. Extragradient-type method for optimal 
ontrolproblem with linear 
onstraints and 
onvex obje
tive fun
tion //Optimization Letters. Springer Verlag, 2013. V. 7, � 6. P. 1193�1214. On a 
onstru
tiongenerating potential games∗N.S. KukushkinDorodni
yn Computing Centre, FRC CSC RAS, Mos
ow, RussiaStrategi
 games are 
onsidered where ea
h player's total utility isthe sum of lo
al utilities obtained from the use of 
ertain �fa
ilities.�All players using a fa
ility obtain the same utility therefrom, whi
hmay depend on the identities of users and on their behavior. If aregularity 
ondition is satis�ed by every fa
ility, then the game admitsan exa
t potential [1℄; both 
ongestion games [2℄ and games withstru
tured utilities [3℄, as well as games of so
ial intera
tions 
onsideredin [4℄, are in
luded in the 
lass and satisfy that 
ondition. Underadditional assumptions the potential attains its maximum, whi
h is aNash equilibrium of the game.A strategi
 game Γ is de�ned by a �nite set N of players, and, forea
h i ∈ N , a set Xi of strategies and a real-valued utility fun
tion uion the set XN :=
∏

i∈N Xi of strategy pro�les. We denote N := 2N \ {∅}and XI :=
∏

i∈I Xi for ea
h I ∈ N .A fun
tion P : XN → R is an exa
t potential of Γ if
ui(yN )− ui(xN ) = P (yN )− P (xN )whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. If x0N ∈ XN maximizes

P over XN , then, obviously, x0N is a Nash equilibrium.A game with additive 
ommon lo
al utilities (an ACLU game) mayhave an arbitrary �nite setN of players and arbitrary sets of strategies Xi

∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h(proje
t 14-07-00075).
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onstru
tion.First of all, there is a set A of fa
ilities ; we denote B the set of all(nonempty) �nite subsets of A. For ea
h i ∈ N , there is a mapping
Bi : Xi → B des
ribing what 
ombination of fa
ilities player i uses when
hoosing xi. Every strategy pro�le xN determines lo
al utilities at allfa
ilities α ∈ A; ea
h player's total utility is the sum of lo
al utilitiesover 
hosen fa
ilities. The exa
t de�nitions need plenty of notations.For every α ∈ A, we denote I−α := {i ∈ N | ∀xi ∈ Xi [α ∈ Bi(xi)]}and I+α := {i ∈ N | ∃xi ∈ Xi [α ∈ Bi(xi)]}; without restri
tinggenerality, we may assume I+α 6= ∅. For ea
h i ∈ I+α , we denote Xα

i :=
{xi ∈ Xi | α ∈ Bi(xi)}. Then we set Iα := {I ∈ N | I−α ⊆ I ⊆ I+α }and Ξα := {〈I, xI〉 | I ∈ Iα & xI ∈ Xα

I }. The lo
al utility fun
tionat α ∈ A is ϕα : Ξα → R. For every α ∈ A and xN ∈ XN , we denote
I(α, xN ) := {i ∈ N | α ∈ Bi(xi)} ∈ Iα. The total utility fun
tion of ea
hplayer i is

ui(xN ) :=
∑

α∈Bi(xi)

ϕα(I(α, xN ), xI(α,xN )).We 
all a fa
ility α ∈ A regular if there is a real-valued fun
tion
ψα(·) de�ned for integer m between max{1,#I−α } and #I+α − 1 su
hthat ϕα(I, xI) = ψα(#I) whenever I ∈ Iα, I 6= I+α , and xI ∈ Xα

I .In other words: whenever a regular fa
ility α is not used by allpotential users, neither the list of users, nor their strategies matter, onlythe number of users.We 
all an ACLU game regular if so is every fa
ility. Both 
ongestiongames and games with stru
tured utilities are regular ACLU games.Theorem 1. Every regular ACLU game admits an exa
t potential.Let a �nite set N of players be �xed. An autonomous fa
ility αis de�ned by two subsets I−α ⊆ I+α ∈ N [I−α may be empty℄, a set
Xα

i of relevant strategies for ea
h i ∈ I+α , and a lo
al utility fun
tion
ϕα : Ξ

α → R, where Iα := {I ∈ N | I−α ⊆ I ⊆ I+α } and Ξα := {〈I, xαI 〉 |
I ∈ Iα & xαI ∈ Xα

I }, exa
tly as above. We 
all an autonomous fa
ility αregular if it satis�es the same 
ondition.Let α be an autonomous fa
ility, and let Γ be an ACLU game withthe same set N , a �nite set A su
h that α /∈ A, and Xi∩Xα
i = ∅ for ea
h

i ∈ N . An extension of Γ with α is a strategi
 game Γ∗ satisfying these
onditions: N∗ = N ; A∗ = A∪{α}; for ea
h i ∈ N , X∗
i = Xi ∪Xα

i if i ∈
I+α and X∗

i := Xi otherwise, B∗
i (xi) = Bi(xi) for ea
h xi ∈ Xi, and, forea
h xαi ∈ Xα

i , there is σi(xαi ) ∈ Xi su
h that B∗
i (x

α
i ) = {α}∪Bi(σi(x

α
i ));
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α(I, x
α
I ) = ϕα(I, x

α
I );whenever β ∈ A, I ∈ Iβ , xI ∈ X∗β

I , and J := {i ∈ I | xi ∈ Xα
i }, thereholds ϕ∗

β(I, xI) = ϕβ(I, (xI\J , σJ (xJ ))).Theorem 2. An autonomous fa
ility α is regular if and only if everyextension Γ∗ of a regular ACLU game Γ with α admits an exa
t potential.The range of Γ's 
an be restri
ted to 
ongestion games or games withstru
tured utilities.To ensure that the potential P attains a maximum, some additionalassumptions are needed. The simplest approa
h would be to have Pupper semi
ontinuous and XN 
ompa
t. A 
ertain degree of subtlety isrequired, however, as was shown even in a parti
ular 
ase [4℄.Assumption 1. The set of fa
ilities A and ea
h strategy set Xi aremetri
 spa
es; ea
h mapping Bi is 
ontinuous in the Hausdor� metri
 onthe target; for every α ∈ A and I ∈ Iα, the fun
tion ϕα(I, ·) : XI → Ris upper semi
ontinuous.For ea
h i ∈ N and m ∈ N, we denote Xm
i := {xi ∈ Xi | #Bi(xi) =

m}.Assumption 2. For ea
h i ∈ N and m ∈ N, either Xm
i = ∅ or Xm

iis a 
ompa
t subset of Xi.Assumption 3. For ea
h i ∈ N , Xm
i 6= ∅ only for a �nite numberof m ∈ N.For every α ∈ A, we denote I◦α :=

{
i ∈ I+α | ∃O

[
(O is open ) & α ∈

O & ∀β ∈ O [i ∈ I+β ⇒ β = α]
]}
; roughly speaking, I◦α is the set ofplayers in whose strategy sets α is topologi
ally isolated.Our �nal assumption 
ombines some sorts of upper semi
ontinuity(of ϕα in α) and monotoni
ity (of ϕα �in I�).Assumption 4. For every α ∈ A, I ∈ Iα, and ε > 0, there is δ > 0su
h that ϕα(I, xI) > ϕβ(J, yJ) − ε whenever β ∈ A \ {α}, J ∈ Iβ ,

xI ∈ Xα
I , yJ ∈ Xβ

J , J ⊆ I \ I◦α, and the distan
es between α and β in Aas well as between xJ and yJ in XJ are less than δ.If A is �nite as, e.g., in a game with stru
tured utilities or in a
ongestion game, then Assumption 4 holds va
uously sin
e I◦α = I+α ,and hen
e no J ∈ N 
ould satisfy the 
onditions.Theorem 3. Every ACLU game satisfying Assumptions 1�4possesses a (pure strategy) Nash equilibrium.Dropping any one of the assumptions makes the theorem wrong.
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es1. Monderer D., Shapley L.S. Potential games. Games and E
onomi
Behavior. 1996. V. 14. P. 124�143.2. Rosenthal R.W. A 
lass of games possessing pure-strategy Nashequilibria. International Journal of Game Theory. 1973. V. 2. P. 65�67.3. Kukushkin, N.S. Congestion games revisited. International Journalof Game Theory. 2007. V. 36. P. 57�83.4. Le Breton M., Weber S. Games of so
ial intera
tions with lo
al andglobal externalities. E
onomi
s Letters. 2011. V. 111. P. 88�90.Epistemi
 approa
h to Bayesian routingproblemT. Matsuhisa∗Ibaraki Christian University, Hita
hi-shi, Ibaraki 319-1295, Japan,IAMR, KarRC, RAS, Petrozavodsk, 185910, RussiaWe highlight on the role of sharing knowledge on the users' individual
onje
tures on the others' sele
tions of 
hannels in a Bayesian routingproblem. Let us 
onsider a Bayesian extension of KP-model, introdu
edas a network game by Koutsoupias and Papadimitriou [5℄, and let usstart to treat the simple KP-model 
onsisting of one storage S and nusers with whi
h ea
h has to use one of m 
hannels to 
onne
t thestorage. Ea
h 
hannel l = 1, 2, · · · ,m has a given 
apa
ity cl. User iintends to send/re
eive information with volume wi to/from the storage
S through 
hannel li. The Bayesian KP-model is given as an extensionof the KP-model equipped with a partition information stru
ture.In the seminar talk, I 
onsidered the Bayesian KP-model withpartition information stru
ture as follows. The users possess withthe same prior distribution on a state-spa
e. In addition they haveprivate information given by a partition information stru
ture i.e., are�exive, transitive and symmetri
 binary relation on a state-spa
e.Ea
h user predi
ts the other players' a
tions as the posterior of theothers' 
hoi
es of 
hannels given his/her information. I have proposedthe two extended notions of equilibria, expe
ted delay equilibrium andrational expe
tations equilibrium, in whi
h the former is given as thepro�les of individual 
onje
tures su
h as ea
h user maximizes his/her

∗Current 
onta
t address: MRI BUSAIKU-BUHI Foundation for S
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h Tokiwa-
ho 1-4-13, Mito-shi Ibaraki 310-0033, Japan.
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tations of delay and the latter is de�ned by the pro�les of
onje
tures su
h as ea
h user minimizes his/her own expe
tations ofso
ial 
ost respe
tively. Under the 
ir
umstan
e, In highlighting theepistemi
 feature I aim to give ne
essity 
ondition for these equilibriaas below:Common-Knowledge CaseTheorem 1[5℄. If all users 
ommonly know an expe
ted delayequilibrium, then the equilibrium yields a Nash equilibrium in the basedKP-model. If they 
ommonly know a rational expe
tations equilibrium,then the equilibrium yields a Nash equilibrium for so
ial 
ost in it.Common-knowledge plays essential role in the above theorem if thereare more than two users. In fa
t, for two users 
ase the theorem is stilltrue without 
ommon-knowledge assumption, however for 3 users 
ase it
annot hold without the assumption. As well known, it is a
tually a verystrong assumption, So we would like to remove out it in our framework.Communi
ation CaseTo the purpose we adopt the 
ommuni
ation pro
ess introdu
ed byParikh and Krasu
ki [6℄ repla
ing 
ommon-knowledge. Let us nowstart that all users form a 
ommuni
ation network. Ea
h user sendsprivately his/her 
onje
ture about the others' 
hoi
es of 
hannels tothe another user a

ording to the 
ommuni
ation network as messages,where the message 
onsists of information about his/her individual
onje
ture about the others' 
hoi
es. The re
ipient of the message has toupdates her/his private information stru
ture by the message re
eived.She/her has to revise her/his 
onje
ture on the others' 
hoi
es, andsend the information about her/his revised 
onje
ture to the anotheruser a

ording to the 
ommuni
ation network. The users 
ontinue to
ommuni
ate their private information of 
onje
ture on the other' 
hoi
esas so on. In this 
ir
umstan
e, we 
an show thatTheorem 2. In the revision pro
ess of rational expe
tations equilibriumsa

ording to the 
ommuni
ation pro
ess, the limiting 
onje
tures yieldsa Nash equilibrium for so
ial 
ost. For the expe
ted delay equilibrium thesame holds true also.
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e of anar
hy. By extending the notion of thepri
e of anar
hy to rational expe
tations equilibriums the upper boundof the pri
e of anar
hy for some typi
al so
ial 
ost fun
tions may begiven as follows:Conje
ture. In the 
ommuni
ation, 
onsider the limiting expe
ted delayequilibriums. Then the extended expe
ted so
ial 
osts for the linearso
ial fun
tion a

ording to the the limiting expe
ted delay equilibriumis bounded by the ratio of the maximal 
apa
ity of the 
hannels by theminimal one; i.e., it is lesser than or equal to Maxni=1ci/Minni=1ci.Literatures Garing et al [2℄ is the �rst paper in whi
h Bayesian Nashequilibrium is treated. They analysis Bayesian extension of routinggame spe
i�ed by the type-spa
e model of Harsanyi [3℄ as informationstru
ture, and they 
olle
ted several results: (1) the existen
e and
omputability of pure Nash equilibrium, (2) the property of the set offully mixes Bayesian Nash equilibria and (3) the upper bound of the pri
eof anar
hy for spe
i�
 types of so
ial fun
tion asso
iated with BayesianNash equilibria.In my work I modify their model by adopting arbitrary partitioninformation stru
ture following Aumann [1℄ instead of the type-spa
emodel. The merit of adopting information partition stru
ture lies notonly in getting the 
lose 
onne
tion to 
omputational logi
 but also inin
reasing the range of its appli
ations in various �elds.It ends well by remarking on the assumption in the model. I havetreated the volumes in the Bayesian KP-model as indivisible goods,but we should treat it as divisible ones when KP-model is 
onsideredas a model of 
loud 
omputing system, be
ause the volumes will begiven as the volumes of information, whi
h is 
onsidered as divisible.Furthermore, it will have to arise several interesting problems toinvestigate in future agendas. Among others the most important is tostudy the several 
ore notions appeared in our framework of Bayesiangame. Referen
es1. Aumann R.J. Agreeing to disagree// Annals of Statisti
s. 1976. V.4. P. 1236�1239.2. Garing M., Monien B., Tiemann K. Sel�sh routing within
omplete information// Theory of Computing Systems. 2008. V.42. P. 91�130.
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omplete information played byBayesian players, I, II, III// Management S
ien
e. 1967. V. 14.P. 159�182, 320�332, 468�502.4. Koutsoupias E., Papadimitriou C.H. Worst-
ase equilibria// In:Meinel C. and Tison S.(eds). Pro
eedings of the 16th InternationalSymposium of Theoreti
al Aspe
t of Computer S
ien
e. Le
tureNotes in Computer S
ien
e. 1999. V. 1563. P. 404�413.5. Matsuhisai T. Sel�sh routing with 
ommon-knowledge. WorkingPaper. 2015.6. Parikh R., Krasu
ki P. Communi
ation, 
onsensus andknowledge// Journal of E
onomi
 Theory. 1990 V. 52. P.78�89.Minimax estimation of the parameter of thenegative binomial distribution∗V.V. Morozov and M.A. SyrovaLomonosov Mos
ow State University, Mos
ow, RussiaLet's 
onsider the minimax estimation problem of the parameter θof the negative binomial distribution (NBD) f(t|θ, r) = θr(1−θ)t(r)t/t!,
t = 0, 1, ..., where (r)t = r(r + 1) · · · (r + t − 1), t > 1, (r)0 = 1. Theparameter r > 0 is assumed to be known. We use the quadrati
 lossfun
tion L(θ, d) = (θ − d)2. For the geometri
 distribution (r = 1) astatisti
al game was solved by G.N. Dyubin in [1℄. Here a similar solutionis obtained for r ∈ (0, 1). If r > 1, a numeri
al method is spe
i�ed for�nding a minimax estimator. When r > 2, the estimate, whi
h minimizesthe maximum risk among linear estimates of the form c1δ0 + c2, where
δ0 is an unbiased estimator, is 
onstru
ted.Problem. A statisti
ian observes a value t of the random variable Thaving NBD f(t|θ, r). A de
ision fun
tion δ : Z+ → [0, 1] is a strategyof the statisti
ian belonging to the set ∆ of all su
h strategies. Afterthe substitution of the strategy δ in the loss fun
tion L and subsequentaveraging over f(t|θ, r), one obtains the risk fun
tion

R(θ, δ) = E[L(θ, δ(T ))|θ] = θr
∞∑

t=0

(r)t
t!

(1− θ)t(θ − δ(t))2.

∗The reported study was funded by RFBR a

ording to the resear
h proje
t� 16-01-00353 a.
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al game G = 〈[0, 1],∆, R(θ, δ)〉 the �rst player (nature)maximizes the risk fun
tion R, and the se
ond player (statisti
ian) mini-mizes it. It's assumed that the nature may use mixed strategies ξ ∈ Ξ.Solution of the game for r ∈ (0, 1). Let θ0 ∈ (0, 1) be a root ofthe equation θ(2θr/2+ r+2) = r and λ0 = (r− (r+2)θ0)/(2θ
r+1
0 + r−

(r + 2)θ0). We denote by Iθ the indi
ator of point θ.Proposition 1. If r ∈ (0, 1), then ξ∗ = λ0Iθ0 + (1 − λ0)I1 and
δ∗(0) = (1 + 2/r)θ0, δ

∗(t) = θ0, t = 1, 2, ... are the optimal strategies ofthe players, and v = (1 − δ∗(0))2 is the value of the game G.Minimax linear estimator. A strategy of interest is the linearestimate δl, whi
h minimizes the maximum risk on ∆l = {c1δ0 +
c2|c1, c2 ∈ [0, 1]} (see [2℄). For any δ = c1δ0 + c2 ∈ ∆l risk fun
tion 
anbe written as F (θ, c1, c2) def= R(θ, δ) = (θ(1− c1)− c2)2+ c21(θrh(θ)− θ2),where

h(θ) =

∞∑

t=0

(r − 1)2t
t!(r)t

(1− θ)t =
r − 1

(1 − θ)r−1

(1−θ)/θ∫

0

zr−2

1 + z
dzis a generalized hypergeometri
 fun
tion. To �nd the strategy δl =

cl1δ0 + cl2, we solve the game Gl = 〈[0, 1], [0, 1]2, F (θ, c1, c2)〉. Considerthe following system of equations for the variables θ, c1, c2 :

Fc1(θ, c1, c2) = 0, Fθ(θ, c1, c2) = 0, F (θ, c1, c2) = F (0, c1, c2). (1)Lemma. For r > 2 the system of equations (1) has a unique solution.Proposition 2. For r > 2 let (θl, cl1, cl2) be the solution of (1). Denote
λl = cl2/(θ

l(1− cl1)). Then ξl = λlIθl + (1− λl)I0 and δl = cl1δ0 + cl2 areoptimal strategies for players and vl = (cl2)
2 is the value of the game Gl.An approximate solution of the game. Let's 
onsider r >

1. For integer N > 1 we de�ne a trun
ated strategy δN =
(δ(0), δ(1), ..., δ(N)) ∈ [0, 1]N+1 and the 
orresponding payo� fun
tion

RN (θ, δN ) = θr
N∑

t=0

(r)tt
!

(1− θ)t(θ − δ(t))2of the game GN = 〈[0, 1], [0, 1]N+1, RN (θ, δN )〉. The fun
tion RN is
onvex in δN . Therefore in the game GN the nature may use mixed
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∑m

i=1 aiIθi , where
m∑

i=1

ai = 1, ai > 0, i = 1, ...,m, 0 6 θ1 6 θ2 6 ... 6 θm 6 1, m 6 N + 2.The set of all su
h strategies is denoted by Ξm. For ea
h strategy ξ ∈
Ξm the 
orresponding Bayesian strategy δξN = (E [Θ|t], t = 0, 1, ..., N)minimizes RN (ξ, δN ) for δN ∈ [0, 1]N+1, where the expe
tations E [Θ|t]are taken over the posterior distribution

ξ|t =
m∑

i=1

aiθ
r
i (1− θi)

tIθi

/ m∑

j=1

ajθ
r
j (1− θj)

t.To solve approximately the game GN , we �x the a

ura
y ε1 > 0 and
hoose a value of m < N + 2. We have
vN = max

ξ∈Ξm
R(ξ, δξN ) = R(ξ∗, δξ

∗

N ) 6 vN 6 v̄N = max
θ∈[0,1]

R(θ, δξ
∗

N ).If inequality v̄N − vN 6 ε1 is not satis�ed, we in
rease m and repeatthe 
al
ulations to a
hieve the a

ura
y ε1. Note that for a given
ε1 a minimal required m grows with r. The following table shows theminimal m, whi
h ensures the a

ura
y ε1 = 10−8 :

r 2 3 4 5 6 7 8 9 10
m 10 12 14 21 25 26 28 30 32 .Using the found strategy δξ∗N let's de�ne a strategy δ∗ in the originalgame G :

δ∗(t) =

{
δξ

∗

N (t), 0 6 t 6 N,

δξ
∗

N (N), t > N.The strategy δ∗ realizes min
δ∈∆

max
06θ61

R(θ, δ∗) with ε > 0. To get ε, we �ndan upper bound for a ¾tail¿ of series R(θ, δ∗) :
∑

t>N

(r)t
t!
θr(1−θ)t(θ−δ∗(t))2 6 max

06θ61
θ2
(
1−

N∑

t=0

(r)t
t!
θr(1−θ)t

)
def
= ε2(N).Now we 
an take ε = ε1 + ε2(N). It should be noted that ε2(N)de
reases slowly with growth of N. For example, if r = 4 ε2(200) ≈

0.00017, and ε2(1000) ≈ 0.000007. At large N the solution of the game
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GN requires a signi�
ant amount of 
omputations. It is possible to redu
e
ε2(N) with the following method. The statisti
ian suggests that θ ∈
[θ, 1], where θ > 0 is a lower bound of the parameter θ. Then in games
G and GN one needs to 
hange the interval [0, 1] to [θ, 1], and 
al
ulate
ε2(N) as maximum on [θ, 1]. For example, if r = 4 and θ = 0.1 theimproved value of ε2(200) equals 10−8. So, the value of the game v is
0.01943937 with ε = ε1 + ε2(200) = 2 · 10−8.Referen
es1. Dyubin G.N. The statisti
al game of the estimation of geometri
distribution parameter// Game-theoreti
al questions. Leningrad:Nauka, 1978. P. 124�125.2. Ferguson T.S, Kuo L. Minimax estimation of a varian
e// Annalsof the Institute of Statisti
al Mathemati
s. 1994. V. 46, �2. P.295�308. Games with polynomials∗N.N. Petrov and V.V. PetrovaUdmurt State University, Izhevsk, Russia,Izhevsk Te
hni
al University, Izhevsk, RussiaThe following 
lass of antagonisti
 games is 
onsidered [1℄: the poly-nomial is given

f : f(x) = xm + a1x
m−1 + · · ·+ am−1x+ am. (1)Two players 
hange alternately one 
oe�
ients ai by any real number,but ea
h 
oe�
ient is used only one time.Payo� fun
tion of the �rst player (player who makes the �rst move)is determined by one of two following ways:a) H1(s1, s2) is the amount of di�erent real roots of the polynomial

f ; b) H2(s1, s2) = −H1(s1, s2)(s1 � is the strategy of the �rst player, s2 � is the strategy of these
ond player).It means that in the 
ase a) the �rst player strives to that thepolynomial f had most of all di�erent real roots and in the 
ase b)the �rst player strives to that the polynomial f had least of all di�erentreal roots. The aim for se
ond player is opposite.
∗This resear
h is supported by RFFI (�16-01-00346).
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 modelsLet vj(m, am) is value of the game with payo� fun
tion Hj of �rstplayer and with m-th degree polynomial (1), where am is 
onstant term.Theorem. That is true1. v1(2n+ 1, a2n+1) = v1(2n+ 1,−1) = 1 for all n > 1;2. v1(2n, a2n) = 2 for all n ≥ 1;3. v1(2n,−1) = 4 for all n ≥ 3, v1(4,−1) = 2;4. v2(2n, a2n) = 4 for all n ≥ 4, v2(4, a4) = 2;5. v2(2n,−1) = 2 for all n ≥ 2;6. 3 ≤ v2(2n+ 1,−1) ≤ 5 for all n ≥ 2, v2(3,−1) = 3.Referen
es1. Petrov N.N. About the one polynomial game// Matemati
heskayaTeoriya Igr i Ee Prilozheniya. 2012. V. 5(3). P. 58�71 (in Russian).Multistage bidding model with elements ofbargaining: extension for a 
ountable statespa
e∗A.I. PyanykhMos
ow State University, Mos
ow, RussiaWe 
onsider a simpli�ed model of a �nan
ial market with two playersbidding for one unit of a risky asset for n ≤ ∞ 
onse
utive stages. Player1 (an insider) is informed about the liquidation pri
e s0 of the asset whilePlayer 2 knows only its probability distribution p. At ea
h stage playerspla
e integral bids. The higher bid wins, and an asset is transa
ted tothe winning player. Ea
h player aims to maximize the value of her �nalportfolio.A model where the pri
e s0 has only two possible values {0,m} is
onsidered in [1℄. It is redu
ed to a zero-sum game Gn(p) with in
ompleteinformation on one side as in [2℄. In this model uninformed Player 2 usesthe history of Player 1's moves to update posterior probabilities overthe liquidation pri
e. Thus, Player 1 should �nd a strategy 
ontrollingposterior probabilities in su
h a way that allows her to use the privateinformation without revealing too mu
h of it to Player 2. In [3℄ the modelis extended so that the liquidation pri
e 
an take any value s ∈ S = Z+a

ording to a probability distribution p = (ps, s ∈ S). It is shown thatwhen Dp is �nite, a game G∞(p) is properly de�ned. For this game thevalue and optimal players strategies are found.
∗The reported study was funded by RFBR a

ording to the resear
h proje
t �16-01-00353a.
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tion pri
e equals to the highest bid.Instead we 
an 
onsider a transa
tion rule proposed in [4℄, and de�ne atransa
tion pri
e equal to a 
onvex 
ombination of proposed bids with a
oe�
ient β ∈ [0, 1]. A model with su
h transa
tion rule and two possiblevalues of the liquidation pri
e is studied in [5℄. Here those results arefurther extended for the 
ase of a 
ountable state spa
e.The model is de�ned as follows. At stage 0 a 
han
e move 
hoosesa state of nature s0 ∈ S a

ording to the distribution p. At ea
h stage
t = 1, n players make bids it ∈ I, jt ∈ J where I = J = Z+. A stagepayo� in state s equals to

as(it, jt) =





(1− β)it + βjt − s, it < jt,

0, it = jt,

s− βit − (1− β)jt, it > jt.Player 1's strategy is a sequen
e of a
tions σ = (σ1, . . . , σn) where
σt : S×It−1 → ∆(I) is a mapping to the set of probability distributions
∆(I) over I. So, at ea
h stage of the game Player 1 randomizes hisbids depending on the history before stage t and the state s. Player2's strategy is de�ned as a sequen
e of a
tions τ = (τ1, . . . , τn) where
τt : J

t−1 → ∆(J). The payo� in this zero-sum game Gn(p) is de�ned as
Kn(p, σ, τ) = E(p,σ,τ)

n∑

t=1

as(it, jt).Let's denote distribution sets Θ(x) = {p′ ∈ ∆(S) : Ep′ = x} and
Λ(x, y) = {p′ ∈ ∆(S) : x < Ep′ ≤ y}. Similar to [3℄, it 
an be shown thatfor p ∈ Λ(k − 1 + β, k + β) a pure strategy τk de�ned as

τk1 = k, τkt (it−1, jt−1) =





jt−1, it−1 < jt−1,

jt−1, it−1 = jt−1,

jt−1, it−1 > jt−1,guarantees to Player 2 a payo� not greater than H∞(p) in game Gn(p).Fun
tion H∞(p) is pie
ewise linear with breakpoints at Θ(k + β) anddomains of linearity Λ(k − 1 + β, k + β). For distribution p su
h that
Ep = k − 1 + β + ξ, ξ ∈ [0, 1), it equals to

H∞(p) = (Dp+ β(1 − β)− ξ(1− ξ))/2.
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e Dp is assumed �nite, the value H∞(p) is �nite as well. Hen
e anin�nitely long game G∞(p) 
an be 
onsidered.Let's denote L∞(p) a guaranteed payo� to Player 1 in game G∞(p),and px(l, r) ∈ Θ(x) a probability distribution taking only values l and r.It 
an be shown that Player 1 
an guarantee herself for p = λp1+(1−λ)p2a payo� of at least λL∞(p1) + (1 − λ)L∞(p2). Sin
e every distribution
p 
an be represented as a 
onvex 
ombination of some px(l, r), provingthat H∞(p) = L∞(p) requires an expli
it proof only for p = pk+β(l, r).Let's denote q = (qi, i ∈ I) a marginal distribution of Player 1's �rstbid and pi = (ps|i, s ∈ S) a posterior distribution over the liquidationpri
e given a bid i was made. Let's also denote σs

i a 
omponent of Player1's stage a
tion, i.e. a probability of making a bid i in state s. Then fromthe Bayes rule σs
i = ps|iqi/ps. Thus in order to de�ne a stage a
tion, itis su�
e to spe
ify q and (pi, i ∈ I).An optimal strategy for px(0,m) as des
ribed in [5℄ 
an be adjustedto pk+β(l, r) in the following way. For p = pl(l, r) and p = pr(l, r) Player1 uses bids l and r respe
tively with probability 1 at the �rst stageof the game. For p ∈

{
pk(l, r), pk+β(l, r)

} she uses a stage a
tion withparameters
pk(l, r) : qk = β, qk+1 = 1− β, pk = pk−1+β(l, r), pk+1 = pk+β(l, r),

pk+β(l, r) : qk = 1− β, qk+1 = β, pk = pk(l, r), pk+1 = pk+1(l, r).Applied re
ursively for respe
tive posterior probabilities at subsequentstages this strategy guarantees to Player 1 a payo� at least
L∞

(
pk+β(l, r)

)
=
(
(r − k − β)(k − l + β) + β(1 − β)

)
/2.This 
oin
ides with the value of H∞

(
pk+β(l, r)

). Thus the game G∞(p)has a value V∞(p) = H∞(p), and strategies des
ribed above are optimal.It must be noted that Player 2's strategy is surprisingly robust inregard to 
hanges in the payo� fun
tion. At the same time Player 1'sstrategy be
omes more 
omplex. For initial p ∈ Θ(k) posterior probabil-ities in [3℄ form a symmetri
 random walk, i.e. posterior p′ will be eitherin Θ(k− 1) or Θ(k+1) with equal to 1/2 probabilities. This is no longertrue when β ∈ (0, 1). The strategy des
ribed above essentially di�ersfrom that in [3℄, e.g. it doesn't 
ollapse to that of [3℄ when β → 1.Referen
es1. Domansky V. Repeated games with asymmetri
 information andrandom pri
e �u
tuations at �nan
e markets // International Jour-nal of Game Theory. 2007. V. 36, � 2. P. 241�257.
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 models 1652. Aumann R.J., Mas
hler M.B. Repeated Games with In
ompleteInformation. Cambridge, Massa
husetts: The MIT Press, 1995.3. Domansky V.C., Kreps V.L. Game theoreti
 bidding model: strate-gi
 aspe
ts of pri
e formation at sto
k markets // The Journal ofthe New E
onomi
 Asso
iation. 2011. V. 11. P. 39�62.4. Chatterjee K., Samuelson W. Bargaining under in
ompleteinformation // Operations Resear
h. 1983. V. 31, �5. P. 835�851.5. P'yanykh A.I. A Multistage ex
hange trading model with asym-metri
 information and elements of bargaining // Mos
ow Uni-versity Computational Mathemati
s and Cyberneti
s. 2016. V. 40,� 1. P. 35�40.Equilibria in dynami
 multi
riteria games∗A.N. RettievaInstitute of Applied Mathemati
al Resear
h Karelian Resear
h Centerof RAS, Petrozavodsk, RussiaMathemati
al models involving more than one obje
tive seem moreadherent to the real problems. Often players have more that one goaland they 
an be not 
omparable. These situations are typi
al for game-theoreti
 models in e
onomy and e
ology. Hen
e, multi
riteria gameapproa
h helps to make de
isions in multi-obje
tive problems.Shapley [4℄ introdu
ed the 
on
ept of multi
riteria games that aregames with ve
tor payo�s, and gave a generalization of 
lassi
al Nashequilibrium to Pareto equilibrium for su
h games. In re
ent years,many authors have studied the game problem with ve
tor payo�s.Some 
on
epts have been suggested to solve multi
riteria games: in [5℄it was presented the notion of ideal Nash equilibrium, [1℄ 
onne
tedmulti
riteria game with potential game and [2℄ suggested E-equilibrium
on
ept.Traditionally, equilibrium analysis in multi
riteria problems baseson the stati
 or steady-state variant. For dynami
 multi
riteria gamesproposed equilibrium 
on
epts do not assist in evaluating players'behavior. Presented work is dedi
ated to linking multi
riteria gameswith dynami
 games. The new approa
h to 
onstru
t the equilibriumin dynami
 game with many obje
tives is proposed.We 
onsider a bi
riteria dynami
 game with two parti
ipants indis
rete time. Players exploit the 
ommon resour
e and both wish to
∗This resear
h is supported by Russian Foundation for Basi
 Resear
h, proje
tsno. 16-01-00183_a and 16-41-100062_p_a.
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 modelsoptimize two di�erent 
riteria. The state dynami
s is in the form
xt+1 = f(xt, u1t, u2t) , x0 = x , (1)where xt ≥ 0 is the resour
e size at step t, uit ∈ Ui indi
ates the strategyof player i, i = 1, 2.The payo� fun
tions of the players over in�nite time horizon arede�ned by

J1 =




J1
1 =

∞∑
t=0

δtg11(u1t, u2t)

J2
1 =

∞∑
t=0

δtg21(u1t, u2t)


 , J2 =




J1
2 =

∞∑
t=0

δtg12(u1t, u2t)

J2
2 =

∞∑
t=0

δtg22(u1t, u2t)


 ,(2)where gji (u1t, u2t) ≥ 0 gives the instantaneous utility, i, j = 1, 2, δ ∈

(0, 1) means the 
ommon dis
ount fa
tor.In the present work we design the equilibrium in multi
ritetiagame using the Nash bargaining solution. Therefore, we begin with
onstru
tion of guaranteed payo�s whi
h play the role of the status quopoints.There are three possible 
on
epts to determine the guaranteed payo�s
G1

1, G2
1, G1

2, G2
2.In the �rst one four guaranteed payo� points are obtained as thesolutions of zero-sum games. In parti
ular, the �rst guaranteed payo�point is a solution of zero-sum game where player 1 wishes to maximizeher �rst 
riterion and player 2 wants to minimize it. Other points areobtained by analogy.The se
ond approa
h 
an be applied when the players' obje
tives are
omparable. Consequently, the guaranteed payo� points for player 1 areobtained as the solution of zero-sum game where she wants to maximizethe sum of her 
riteria and player 2 wishes to minimize it. And, byanalogy, for player 2.In the third approa
h the guaranteed payo� points are 
onstru
tedas the Nash equilibrium with the �rst and the se
ond 
riteria of bothplayers, respe
tively.To 
onstru
t multi
riteria payo� fun
tions we adopt the Nashprodu
ts. The role of the status quo points belongs to the guaranteedpayo�s of the players:

H1(u1t, u2t) = (J1
1 (u1t, u2t)−G1

1)(J
2
1 (u1t, u2t)−G2

1) , (3)
H2(u1t, u2t) = (J1

2 (u1t, u2t)−G1
2)(J

2
2 (u1t, u2t)−G2

2) . (4)
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on
ept.De�nition. Strategy pro�le (u∗1t, u∗2t) is 
alled multi
riteria Nash equilib-rium of the problem (1)�(2) if
H1(u

∗
1t, u

∗
2t) ≥ H1(u1t, u

∗
2t) ∀u1t ∈ U1 , (5)

H2(u
∗
1t, u

∗
2t) ≥ H2(u

∗
1t, u2t) ∀u2t ∈ U2 . (6)Just like in 
lassi
al Nash equilibrium approa
h it is not pro�table forboth players to deviate from equilibrium strategies. But under presentedequilibrium 
on
ept players maximize the produ
t of the di�eren
esbetween optimal and guaranteed payo�s (3)�(4).A dynami
 multi
riteria model related with the bioresour
emanagement problem (�sh 
at
hing) is investigated to show howsuggested 
on
ept works. Referen
es1. Patrone F., Pusillo L. and Tijs S.H. Multi
riteria games andpotentials // Top. 2007. V. 15. P. 138�145.2. Pusillo L., Tijs S. E-equilibria for multi
riteria games // Annals ofISDG. 2013. V. 12. P. 217�228.3. Rettieva A.N.A dis
rete-time bioresour
e management problemwith asymmetri
 players // Automation and Remote Control.2014. V. 75(9). P. 1665�1676.4. Shapley L.S. Equilibrium points in games with ve
tor payo�s //Naval Resear
h Logisti
 Quarterly. 1959. V. 6. P. 57�61.5. Voorneveld M., Grahn S. and Dufwenberg M. Ideal equilibria innon
ooperative multi
riteria games // Mathemati
al Methods ofOperations Resear
h. 2000. V. 52. P. 65�77.



Analysis of politi
alpro
esses and 
orruption
The phenomena of soft power and doublestandards in mathemati
al model of
ross-
ultural intera
tionYu.I. BrodskyFederal Resear
h Centre Computer S
ien
e and Control of the RussianA
ademy of S
ien
es, Mos
ow, RussiaThe arti
le presents the results of mathemati
al modeling of 
ross-
ultural intera
tion by the 
ompetition equations. Study of the model�nds the possibility of a paradox situation, when one of the 
ulturespositively treats the other, though this other one is a
tually quite harmfulto it. Conversely, in some 
ases, quite a harmless 
ulture 
an be treatedas very negative one.Double standards are 
hara
terized by di�erent appli
ation of theprin
iples, laws, rules, estimates to the same a
tions of various subje
ts,depending on the degree of loyalty of these subje
ts to the estimator orother reasons of bene�t for him. As for the soft power - this term was forthe �rst time introdu
ed in 1990 by Joseph Nye of Harvard University[3℄, but something similar 
an be found also in works of Antonio Grams
iand even in the an
ient time - in Laozi's Tao Te Ching. It is possible tosay, that the 
ultural values 
apable to indu
e others to want what iswanted by you, are the 
ornerstone of the 
on
ept of soft power.In the work [1℄ an intera
tion of two 
ultures was modelled by
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orruption 169A. Lotka and V. Volterra 
ompetition equations.
dN

dt
= αN

(
1− N

N∗ −m
M

M∗

)
,

dM

dt
= βM

(
1− M

M∗ − n
N

N∗

)
. (1)Here we treat a 
ulture on its household level - as a 
ertain methodof behavior, i.e. as a set of standard rea
tions to standard requests of theenvironment. In our elementary model (1) we sele
t from this set onlytwo fa
tors: an attitude to 
ompatriots and an attitude to strangers.In the same work [1℄ it was shown that the behavior of this systemof equations �rst of all depends on 
oe�
ients of intoleran
e n and m.It would also be possible to 
all these 
oe�
ients by double standardsfa
tors � they show in how many times the 
ompetition in the 
ulturemore or less than its 
ompetition with the foreign one.We shall distinguish the following ranges of these double standard
oe�
ients:

• Supertoleran
e, if −∞ < n,m < 0.
• Toleran
e, if 0 ≤ n,m < 1.
• Treatment without prejudi
es and preferen
es, when n and mequals to one (no double standards).
• Intoleran
e, when 0 < n,m <∞.It o

ures [1℄, that if the double standard 
oe�
ients are lesser thanone (toleran
e), the 
ultures are friendly - they 
an exist together. If thedouble standard 
oe�
ient of a 
ulture is greater than one (intoleran
e)- this 
ulture 
onstitutes a real danger to another - may for
e it out fromthe system.Besides, the 
apability of so
ial systems to 
hange the behavior onshort times in response to 
urrent situation, turns the dynami
 system(1) into a position di�erential game [2℄, where the double standard
oe�
ients n and m be
ome the 
ontrols of players.That is why double standards are so popular in the interstaterelations. Nevertheless, in the work [1℄ it is shown that if the rivals areequally strong, un
ontrolled in
rease in mutual intoleran
e (use of doublestandards), be
omes equally dangerous to both players. In this 
ase thereare other interesting strategies of the game [2℄.Now let us look at a situation, for example, from the position of
ulture N representative. First, the value N

N∗ is well-known to him,be
ause this value is a way of attitude to 
ompatriots in the 
ulture N- a way of good behavior whi
h is taught sin
e the 
hildhood. Se
ondly,the value m M
M∗ is also known - it is a 
ometition pressure of the 
ulture
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M , whi
h the representatives of the 
ulture N dire
tly observe, be
ausethey are under this pressure. Most likely, these values are not identi
al
N
N∗ 6= m M

M∗ - be
ause the 
ultures are really di�erent.Further, it is quite natural to assume that if N
N∗ > m M

M∗ , then itis pleasant to the representative of the 
ulture N - usually it is pleasantto anybody, when the pressure upon him weakens. Perhaps, he assessesthis situation approximately so: "Ah, what darlings, these well-manneredpeople ofM - not that my rough 
ompatriots!"On the 
ontrary, if N
N∗ <

m M
M∗ , then representative of N does not like this fa
t - very few peoplelike the pressure bigger than usual. Most likely he will think: "Well andhow savage are theseM ! It is quite impossible to live nearby them! Theyare not able to behave at all!"A
tually, both as the �rst, either the se
ond estimate 
an be deeplywrong - in the system (1) nothing depends upon the ratio between thevalues N

N∗ and m M
M∗ , as well as from the ratio between M

M∗ and n N
N∗ .The behavior of the system (1) depends only upon the double standardfa
tors n and m [1℄.For example, if N

N∗ >> m M
M∗ , but at the same time m > 1 -the situation 
an be dangerous for the 
ulture N , it 
an disappear
ompletely over a time, be
ause of the neighborhood with �lovely andwell-mannered� people, espe
ially if it puts n ≤ 1, having been underillusion of the �rst inequality.On the 
ontrary, if N

N∗ < m M
M∗ and even N

N∗ << m M
M∗ , but m < 1- there is no danger for the 
ulture N to disappear near the 
ulture M .Moreover, if n > 1 - the 
ulture N for
es out the rival trough a time.However, if the system (1) be
omes a di�erential game, thedouble standard fa
tors n and m are not observed dire
tly. For therepresentative of the 
ultureN to de�nem, is ne
essary to 
ompare givenhim in feelings m M

M∗ with M
M∗ , but the last value, as a rule is unknownto him: studying of foreign 
ultures is a destiny of rather narrow 
ir
leof spe
ialists.Thus,this elementary model learns us that it is in
orre
t to measureone 
ulture by the gauge of another � su
h a measurement is not valid.The only true yardsti
k for the 
ulture is this 
ulture itself, i.e. the
ompetitive pressure of a foreign 
ulture is to be 
ompared with its owninternal 
ompetition, but by no means with the internal 
ompetition ofthe native 
ulture.



Analysis of politi
al pro
esses and 
orruption 171At the author's subje
tive view, this paradox illustrates why our
utting through a �window to Europe� during the last 300 years isnot too su

essful. The Slavs on
e lived in Europe, but little fromthem remained. At the same time, under the Horde Yoke we survived,and under the Ottoman Empire the southern Slavs did, though veryunpleasant memoirs about these History periods remained in the folkloreof survivors. Referen
es1. Brodsky Yu.I. Toleran
e, Intoleran
e, Identity: simple math modelsof 
ultures' intera
tion. Saarbru
ken: LAP LAMBERT A
ademi
Publishing, 2011.2. Brodsky Yu.I. Cross-Cultural Intera
tion as a PositionalDi�erential Game // Fa
ing an Unequal World: Challengesfor Russian So
iology, Editor-in-Chief V. Mansurov, Mos
ow-Yokohama, 2014. P. 313-316.3. Nye J. S. Soft Power: The Means to Su

ess in World Politi
s.N.Y.: Publi
 A�airs, 2004.
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Nash-2 equilibrium: how farsighted behaviora�e
ts stable out
omes∗M.S. SandomirskaiaNational Resear
h University Higher S
hool of E
onomi
s, Mos
ow,Russian FederationIn a bounded rationality framework, modeling iterated strategi
thinking pro
ess be
omes more and more 
ompli
ated as the numberof parti
ipants in
reases. Most papers have been devoted to analysis of2-person games with non-trivial agents expe
tations on the opponent'srea
tion and various depths of su
h mutual predi
tions. The 
ommonapproa
h to n-person games with n > 2 is to introdu
e 
ognitivehierar
hy of players (see survey [1℄). This requires 
ertain knowledge ofthe opponent's 
al
ulation abilities. However in many real-life situations,players might fa
e an un
ertainty how sophisti
ated their 
ompetitorsare. In parti
ular, the opponents' levels of rationality evolve in the 
ourseof the game [2℄. In this 
ase an a

urate predi
tion of response even atone step ahead seems to be unreasonable.The paper [5℄ introdu
es an equilibrium 
on
ept, so-
alled Nash-2 equilibrium, in 2-player games with the following idea. A playersupposes that any pro�table response of the opponent might followson her deviation and reje
ts su
h own improvement that may lead to

∗The study was prepared within the framework of a subsidy granted to the HSEby the Government of the Russian Federation for the implementation of the GlobalCompetitiveness Program.



Markets and au
tions: analysis and design 173poorer situation after some opponent's rea
tion. [5℄ provides a 
omplete
hara
terization of Nash-2 equilibrium, resolves existen
e problem,dis
usses the relation with equilibrium in threats and 
ounter-threats,equilibrium in se
ure strategies, sequentially stable set, equilibrium indouble best responses, and 
ontains 
onvin
ing examples why su
hequilibria 
an sometimes explain ta
it 
ollusion and more e�e
tiveout
omes than Nash equilibrium.In this work I extend the de�nition on Nash-2 equilibrium to n-person non-
ooperative games. The underlying intuition is based onspatial e
onomi
s notion of dire
t and indire
t 
ompetitors [3℄. In a gamewith large number of players it is natural to assume that ea
h playerdivides her opponents into dire
t 
ompetitors whose rea
tion she worriesabout and tries to predi
t, and indire
t 
ompetitors whose strategy isbelieved to be �xed as in Nash equilibrium 
on
ept. Su
h a sele
tivefarsightness looks more plausible than total ignoran
e of rea
tions orperfe
t predi
tion of future behavior of all other 
ompetitors.Consider an n-person non-
ooperative game in the normal form G =
(i ∈ I = {1, . . . , n}; si ∈ Si; ui : S1 × . . . × Sn → R), where si, Siand ui are the strategy, the set of all available strategies and the payo�fun
tion, respe
tively, of player i, i = 1, . . . , n.Let us de�ne the re�e
tion network g by the following rule. Nodesare players i in I. A dire
ted link gij = 1 from player i to j meansthat player i a

ounts pro�table responses of player j in her reasoning.
gij = 0, otherwise. Denote by Ni(g) the set of neighbours j of player iin the graph g, su
h that gij = 1.De�nition 1. A deviation s′i of player i at pro�le s = (si, s−i) isse
ure if for any subset J ⊆ Ni(g) and any pro�table deviation s′jof every player j ∈ J at intermediate pro�le (s′i, s−i) even in 
ase ofsimultaneous deviations of all players from J player i is not worse o�,i.e. ui(s′i, s′J , s−iJ) ≥ ui(s).We maintain a non-
ooperative framework and assume that if playeri has several out-neighbors they will not 
oordinate their a
tions. In thispaper the re�e
tion network is �xed exogenously before the game starts,it is not a result of strategi
 
hoi
e.Note that if Ni(g) = ∅ then player i does not worry about any possiblerea
tions, and so every her deviation is se
ure by de�nition. We will 
allthis situation fully myopi
 behavior.De�nition 2. A strategy pro�le is a Nash-2 equilibrium if no playerhas a pro�table and se
ure deviation.Every Nash equilibrium is also a Nash-2 equilibrium irrespe
tive



174 Markets and au
tions: analysis and designof the ar
hite
ture of the re�e
tion network. Moreover, in the 
ase ofempty re�e
tion network they are 
oin
ide by de�nition. In general, non-trivial re�e
tion network signi�
antly in�uen
es equilibrium out
omes.A striking example is prisoner's dilemma.Consider the model of n-player prisoner's dilemma from [4℄. Ea
hplayer has two possible strategies: to 
ooperate with the 
ommunity orto defe
t. The utility fun
tion is
ui =

{
bA/n− c, if player i 
ooperates,
bA/n, if player i defe
ts,where A is a number of 
ooperators in the game, ea
h of them bringspro�t b to the so
iety, but pays the 
ost c. The total pro�t is equallydivided to all n players irrespe
tive of their real 
ontribution. Unilateraldefe
tion is preferred for ea
h individual c > b

n ; overall 
ooperation ismore preferred for ea
h player than 
ommon defe
tion b > c > 0.Though under Nash rationality, 
ooperation is unlikely to emerge,even in evolutionary game setting, 
onsidering a non-empty re�e
tionnetwork yields 
ooperation. The number of 
ooperators depends bothon the ar
hite
ture of network and the relation between b and c. Assumethat A players 
ooperate and any 
ooperator i re�e
ts about ni other
ooperators. Su
h a situation is a Nash-2 equilibrium if and only if
ni > n∗ =

cn

b
− 1, A >

cn

b
.This means that a player re�e
ting about relatively small numberof agents never 
ooperates. Therefore, in Nash-2 equilibrium any subsetof players with su�
ient number of "links"with the other 
ooperatorsare able to maintain 
ooperation while all other defe
t if the numberof 
ooperators is enough to provide positive pro�ts for 
ooperators.When these pro�ts are very small the 
ooperation requires the 
ompletere�e
tion network among 
ooperators. Hen
e, for supporting 
ooperativebehavior it is important not only to provide a balan
e between the valueof individual return and the 
ooperation 
ost, but also to ensure 
lose
onta
ts between 
ooperators.Further examples will in
lude analysis of oligopoly with di�erentstru
tures of re�e
tion networks. The 
onne
tion with spatial models willbe highlighted. Common patterns of re�e
tion networks will be identi�ed.Referen
es1. Crawford V., Costa-Gomes M., Iriberri N. Stru
tural Modelsof Nonequilibrium Strategi
 Thinking: Theory, Eviden
e, and
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ations // Journal of E
onomi
 Literature. 2013. Vol. 51, No.1. P. 5-62.2. Frey S., Goldstone R. Flo
king in the depths of strategi
 iteratedreasoning // arXiv preprint arXiv:1506.05410. 2015.3. Gabszewi
z J.J., Thisse J.-F. Spatial 
ompetition and the lo
ationof �rms. In: Lo
ation Theory (Fundamentals of Pure and AppliedE
onomi
s, 5). 1986. P. 1-71.4. Rezaei G., Kirley M., Pfau J. Evolving 
ooperation in the n-player prisoner's dilemma: A so
ial network model // Arti�
ialLife: Borrowing from Biology. Springer Berlin Heidelberg, 2009. P.43-52.5. Sandomirskaia M. Rational de
ision making under un
ertaintyof rea
tion: Nash-2 equilibrium 
on
ept // Working paperWP7/2016/01. Series WP7 "Mathemati
al methods for de
isionmaking in e
onomi
s, business and politi
s". 2016. P.1-40.Optimization of energeti
 markets' transportinfrastru
ture∗A. Vasin, M. Dolmatova, and P. KartunovaLomonosov Mos
ow State University, Mos
ow, RussiaMarkets of natural gas, oil and ele
tri
ity play an important rolein e
onomies of many 
ountries. Every su
h market in
ludes its owntransmission system. Consumers and produ
ers are lo
ated at di�erentnodes, and transmission 
apa
ities of the lines between the lo
al marketsare limited. The share of transport 
osts in the �nal pri
e of the resour
eis typi
ally substan
ial, the problem of transmission system optimizationis of pra
ti
al interest. Paper [1℄ determines the optimal transmission
apa
ity for a two-node market. The present study 
onsiders a generalproblem of so
ial welfare optimization with a

ount of produ
tion 
osts,
onsumers' utilities and 
osts of trasmission 
apasities' in
rements. The
omplexity of the problem 
on
erns with substan
ial �xed 
osts relatedto expansions of transmitting lines. If the set of expanded lines weregiven the problem would be 
onvex and 
ould be solved by standardmethods. However, under a big number of lines the e�
ient sear
h ofthe set requires spe
ial tools. In general the problem of transport systemoptimization is NP-hard ( see [2℄). Below we determine 
onditions for
∗The resear
h was supported by Russian Foundation for Basi
 Resear
h (proje
tNo. 16-01-00353/16).



176 Markets and au
tions: analysis and designsubmodularity and for supermodularity of the so
ial welfare fun
tion onthe set of transmitting lines. These properties provide a possibility toapply the known e�
ient optimization methods (see[3℄,[4℄).We 
onsider a homogeneous good market 
onsisting of several lo
almarkets and a network transmission system. Let N denote the set ofnodes and L ⊆ N×N be the set of edges. Every node i ∈ N 
orrespondsto a lo
al perfe
tly 
ompetitive market. Demand fun
tion Di (p) andsupply fun
tion Si (p) 
hara
terize respe
tively 
onsumers and produ
ersin the market and meet standard 
onditions. The demand fun
tionrelates to the 
onsumption utility fun
tion: Ui (q) =
∫ q

0 D
−1
i (v) dv.The supply fun
tion Si (p) determines the optimal produ
tion volumeat the node i : Si (p) = Arg maxv(pv − ci(v)) , where ci(v) is theminimal produ
tion 
ost of volume v at node i. The total pro�t ofprodu
ers at node i under pri
e p is Pri (p) =

∫ p

0 Si(p)dp. For any
(i, j) ∈ L, the line is 
hara
terized by initial transmission 
apa
ity Q0

ij ,unit transmission 
ost eijt , 
ost fun
tion of the transmission 
apa
ityin
rement, in
luding �xed 
osts eijf and variable 
osts eijv (Qij , Q
0
ij), eijvis a monotonous 
onvex fun
tion of in
rement (Qij − Q0

ij). The 
ost ofthe line expansion is the overnight 
onstru
tion 
ost amortized over thelife-time Tij of the line using dis
ount rate r: eij = r
OCij

1−erTij
(see [5℄ forthe detailed dis
ussion). Let qij denote the �ow from the market i tomarket j, qij = −qji. Denote Z (i) the set of nodes 
onne
ted with node

i. Under any �xed �ows of the good −→q = (qij , (i, j) ∈ L) and produ
tionvolumes −→v = (vi, i ∈ N), the total so
ial welfare for the network marketis
W (−→q ,−→v ) =

∑

i∈N

[Ui


vi +

∑

l∈Z(i)

qli


− ci (vi)]−

∑

(i,j)∈L, i<j

Eij (qij).where
Eij (qij) =

{
eijf + eijv

(
|qij | −Q0

ij

)
+ eijt |qij | , if |qij | > Q0

ij ,

eijt |qij | , if |qij | ≤ Q0
ij .The welfare optimization problem under 
onsideration is

max−→q ,−→v
W (−→q ,−→v ) . (1)Let △Si (pi) = Si (pi)−Di (pi) denote the supply-demand balan
e.
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tions: analysis and design 177Proposition 1 Under any �xed �ows (qij , (i, j) ∈ L), for every i ∈ N ,the optimal produ
tion volume at node i is vi = Si(p̃i), where p̃i meetsequation △Si (p̃i) =
∑

j∈Z(i) qijFor any L ⊆ L, 
onsider a problem (2) with �xed set L of expanded lines.That is, |qij | ≤ Q0
ij for (i, j) ∈ L \ L, and the �xed 
osts are alwaysin
luded in Eij for (i, j) ∈ L.Proposition 2 The latter problem is 
onvex, and its solution

(−→q ,−→v )(L) meets FOCs whi
h determine the 
ompetitive equilibrium ofthe 
orresponding network market.Let W̃ (L) denote the maximal welfare in the latter problem. Thenproblem (1) redu
es to maxL⊆L W̃ (L). Below we also 
onsider problem(1) without 
onstru
tion 
osts and under 
onstraint: |qij | ≤ Qij , (i, j) ∈
L. Let p̃i(−→Q), i ∈ N , denote the equilibrium pri
es 
orresponding to thesolution of this problem.De�nition 1 The model under 
onsideration meets the �ow stru
tureinvarien
e 
ondition if, for any −→

Q >
−→
Q0, (i, j) ∈ L, sign(pi(

−→
Q) −

pj(
−→
Q)) = sign(pi(

−→
Q0)− pj(

−→
Q0)).A fun
tion w(L), L ⊆ L, is submodular (resp. supermodular) on L, iffor any L1, L2 ⊆ L w(L1) + w(L2) > (6) w(L1 + L2) + w(L1 ∩ L2).The desirable properties of the welfare fun
tion 
losely relate to the�ow stru
ture invarian
e 
ondition. In general the fun
tion is neithersubmodular nor supermodular even for 
hain-type graphs, where L =

{(i, i + 1), i = 1, ..., n − 1}. Consider a market with 3 nodes where
p1(

−→
Q0) > p2(

−→
Q0) > p3(

−→
Q0). Then the fun
tion is supermodular a

ordingto Theorem 1 given below. If �ow dire
tions 
onverge, then the fun
tionis submodular by Theorem 2. In general a 
hain-type market may in
ludeboth stru
tures as its 
omponents and meet none of the 
onditions ofsuper- or submodularity. Moreover, �ow dire
tions may 
hange as the
apa
ities in
rease. Below we establish 
onditions for the �ow stru
tureinvarian
e and examine the welfare fun
tion for 
hain-type and star-typemarkets.Theorem 2 For a 
hain-type market with n nodes, let the initial pri
es

pi(
−→
Q0), i = 1, .., n, monotonously de
rease in i. Then, for any −→

Q ≥ −→
Q0,

pi(
−→
Q) ≥ pi+1(

−→
Q), i = 1, .., n − 1, and fun
tion W̃ (L) is supermodular.The 
omplexity of sear
h for the optimal set L∗ under −→

Q0 = 0 does notex
eed (n−1)n
2 .



178 Markets and au
tions: analysis and designConsider a star-type market where N = {0, 1, .., n}, L = {(0, i), i =

1, .., n}, pi(
−→
Q0) < p0(

−→
Q0) for i ∈ I1 = {2, ..,m}, pi(

−→
Q0) > p0(

−→
Q0) for

i ∈ I2 = {m+ 1, .., n}. For M ⊆ L, let (−→Q0||−→Q∞
M ) denote ve
tor −→Q su
hthat Ql = Q0

l for l /∈M , Ql = ∞ for l ∈M .Theorem 3 The market meets the 
ondition of the �ow stru
tureinvarien
e if and only if ∀i ∈ I1 pi(
−→
Q0||−→Q∞

I1
) < p0(

−→
Q0||−→Q∞

I1
) and

∀i ∈ I2 pi(
−→
Q0||−→Q∞

I2
) > p0(

−→
Q0||−→Q∞

I2
). Under this 
ondition, the so
ialwelfare fun
tion W̃ (L1 ∪ L2) is submodular in L1 ⊆ I1 under a �xedset L2 ⊆ I2, and is also submodular in L2 ⊆ I2 under a �xed set

L1 ⊆ I1. Besides that, for any L1, l ∈ I1 \ L1, the welfare fun
tionin
rement W̃ (l ∪L1, L2)− W̃ (L1, L2) monotonously in
reases in the set
L2, and for any L2, l ∈ I2 \L2, the in
rement W̃ (L1, l∪L2)−W̃ (L1, L2)monotonously in
reases in the set L1.These properties of tree-type markets allow to use the known algorithms[3℄ for submodular and supermodular fun
tions maximization in orderto solve the optimization problem.Referen
es1. A. A. Vasin and E. A. Daylova, Optimum Throughput of a Systemof Produ
t Logisti
s between Two Markets, Mos
ow UniversityComputational Mathemati
s and Cyberneti
s, 2014, Vol. 38, No.3, pp. 136-141., 2014.2. Guisewite G.M., Pardalos P.M., Minimum 
on
ave-
ost network�ow problems: Appli
ations, 
omplexity, and algorithms. Annalsof Operations Resear
h, 25 (1); 1990. p. 75-99.3. Kha
haturov V.R. Mathemati
al Methods of RegionalProgramming. Nauka, Mos
ow; 1989 (in Russian).4. Daylova E.A., Vasin A.A. Determination of Transmission Capa
ityfor a Two-node Market. Pro
edia Computer S
ien
e. 31; 2014. p.151�157.5. Stoft S. Power System E
onomi
s: Designing Markets forEle
tri
ity. New York. Wiley; 2002.
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tions: analysis and design 179Optimal regulation norms for 
ompetitivemarkets∗A. Vasin, E. Sivova, and A. TyulenevaLomonosov Mos
ow State Univer
ity, Mos
ow, RussiaThis paper 
onsiders a 
ompetitive market of a homogeneous goodwith produ
tion negative externalities. We provide a theoreti
al modelfor determination of optimal regulation norms. Our study followsthe approa
h that determines regulation norms pro
eeding from theso
ial welfare maximization problem (see [1℄, [2℄, [3℄, [4℄). We �nd out
onditions for existen
e of a uniform optimal norm for all produ
ers andprovide an expli
it formula for 
al
ulation of some sanitary norms.Let A = {1, ..., n} be a set of �rms produ
ing a homogeneous good.Its produ
tion 
on
erns with some negative external e�e
t. Besidesprodu
tion volume qa the negative impa
t depends on te
hnologi
alparameter ra established by the produ
er. Below we 
all it the internalstandard. Thus, formally a strategy of produ
er a is a pair (qa, ra). Belowwe 
onsider also an external norm related to the parameter. Produ
tion
osts of produ
er a 
orrespond to the following expression:
Ca(qa, ra) = ca(qa) + c1a(qa, ra) + c2a(qa, ra), (1)where ca(qa) is the minimal 
ost of the volume qa produ
tion, c1a(qa, ra)- the additional 
ost related to the normative standard, c2a(qa, ra) -the average 
ost of the negative e�e
t's 
ompensation under the givenprodu
er's strategy.Consumers behavior is 
hara
terized by 
ontinuous demand fun
tion

D(p) with standard properties: D(p) de
reases and is di�erentiablealmost everywhere, it is equal to zero when the pri
e ex
eeds some level.The demand does not depend on standards set by produ
ers be
ause
onsumers do not have reliable information about them and, moreover,
annot estimate the impa
t of this fa
tor on their utilities.Let r denote an external norm established by some regulatinggovernment body. The norm is typi
ally set for all produ
ers of thegood and does not depend on parti
ular a ∈ A. We assume that it limitspermitted internal standards from above and thus determines the set ofpossible strategies for ea
h produ
er: pair (qa, ra) is feasible if ra 6 r.Consider a model where the market is perfe
tly 
ompetitive and ea
hprodu
er aims to maximize his pro�t under given norm and pri
e:
∗This resear
h is supported by the Russian Fund for Basi
 Resear
h, proje
t N 16-01-00353/16.
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(qa∗, ra∗)(p, r) → max

(qa,ra):ra6r
(pqa − Ca(qa, ra)). (2)The supply fun
tion of produ
er a is determined as

Sa(p, r) = Argmax
qa

(pqa − min
ra6r

Ca(qa, ra)). (3)The total supply fun
tion is S(p, r) =
∑

a S
a(p, r), and the
ompetitive equilibrium pri
e p̃(r) pro
eeds from the 
ondition D(p) ∈

S(p, r).Proposition 1 Assume that, for ea
h produ
er a, his 
ost fun
tionmay be represented as Ca(qa, ra) = ca(qa) + qac
a
(ra), where ca(q) isa 
onvex and in
reasing fun
tion, ca(r) is a 
onvex fun
tion that rea
hesits minimal value at r̂a. Then the equilibrium pri
e p̃(r) does not in
reasein r.Thus, the tougher the norm the grater is the pri
e. Below we dis
ussthe following issues: what is the optimal state of the e
onomy witha

ount of the negative externality? How to rea
h this optimal stateby means of the regulation?Consider the optimal strategy of produ
er a at theequilibrium under a given norm: r: qa∗(r) ∈ Sa(p̃(r), r),

ra∗(r) = argminra6r C
a(qa∗(r), ra). The so
ial welfare with a

ount ofthe negative externality is determined as

W (r) =

=

D(p̃(r))∫

0

D−1(q)dq −
∑

a

Ca(qa∗(r), ra∗(r))−
∑

a

Ca
lost(q

a∗(r), ra∗(r)),

∫D(p̃(r))

0
D−1(q)dq is the total 
onsumers' utility without the impa
tof the negative externality, ∑a C

a(qa∗(r), ra∗(r)) shows the total 
ostsof produ
ers, and Ca
lost is the loss of the so
ial welfare related to thenegative externality that is not 
ompensated by the produ
er.Consider a problem of the so
ial welfare optimization for thise
onomy under a 
entralized planning. Let Ca

W = Ca + Ca
lost. Thenthe problem may be set as follows:

∑
a qa∫

0

D−1(q)dq −
∑

a

Ca
W (qa, ra) → max

qa,ra,a∈A
. (4)
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tions: analysis and design 181Proposition 2 Assume that fun
tion C
a

W (qa)
def
= minra C

a
W (qa, ra) is
onvex. Then a 
ombination of solutions (qa∗, ra∗) for problem (2) under
onstraint ra 6 r̂a, a ∈ A, is a solution of problem (4).If the optimal values ra in the solution of the problem (4) are allequal to r̂, then we 
all r̂ a uniform optimal norm.Consider a parti
ular 
ase where the norm bounds 
on
entration ofsome harmful substan
e in the pur
hased good. For ea
h produ
er A, let

ca(qa) denote the 
ost of produ
tion of the given volume without anypuri�
ation. The initial 
on
entration of the substan
e is ra0 , and fun
tion
camarg(r) determines the marginal 
ost of puri�
ation depending on the
on
entration. Then the 
ost of puri�
ation under standard normative
ra is c1a(qa, ra) = qa

∫ ra0
ra
camarg(r)dr, where fun
tion camarg de
reases in

r. This property holds be
ause redu
tion of the 
on
entration in a givenamount is the 
heaper the higher is the initial 
on
entration.Under a soft internal standard a produ
er fa
es the risk of additional
osts related to 
ompensations of losses for 
onsumers whi
h su�eredfrom high 
on
entration of the substan
e. Let w(ra) denote the moneyequivalent of the average 
onsumer loss per one unit of the good. Thisfun
tion monotonously in
reases in ra, as well as the share πa(ra) ofthe loss that the produ
er 
ompensates to 
onsumers. Thus, the totalprodu
tion 
osts meet Ca(qa, ra) = ca(qa) + c1a(qa, ra) + c2a(qa, ra)where c2a(qa, ra) = qaπa(ra)w(ra).A

ording to equation (2), the internal standard of produ
er a meets
ondition
ra

∗
= argmin

ra

(∫ ra0

ra
camarg(r)dr + πa(ra)w(ra)

)
.In the perfe
tly 
ompetitive market the optimal strategy under agiven norm r is a solution of the problem

(qa
∗
, ra

∗
)(p, r) →

→ max
(qa,ra):
ra6r


pqa − ca(qa)− qa

ra0∫

ra

camarg(r)dr − qaπ(ra)w(ra)


 .The total of produ
tion 
osts and 
onsumers' losses in this 
ase is

Ca
W (qa, ra) = ca(qa) + qa

ra0∫

ra

camarg(r)dr + qaw(ra), (5)
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tions: analysis and designand the un
overed 
onsumers' losses related to the harmful substan
eare Ca
lost(q

a, ra) = qa(1 − π(ra))w(ra). Denote ∑a q
a = qΣ. Then theso
ial welfare maximization problem is

qΣ∫

0

D−1(q)dq −
∑

a


ca(qa) + qa

ra0∫

ra

camarg(r)dr + qaw(ra)


→ max

qa, ra, a∈A
.Proposition 3 Assume that the puri�
ation te
hnology 
hara
terized bythe marginal 
ost fun
tion cmarg(r) is the same for all produ
ers. Thenthe optimal sanitary norm r∗ binding the maximal 
on
entration of theharmful substan
e meets equation cmarg(r

∗) = w′(r∗), and the optimalprodu
tion volumes pro
eed from the system
D−1(qΣ) = ca

′
(qa) +

∫ ra0
r∗ c

a
marg(r)dr + w(r∗), a ∈ A.Referen
es1. Atkinson A.B. and Stiglitz J.E. Le
tures on Publi
 E
onomi
s //M
Graw-Hill, 1980.2. La�ont J.J. and Tirole J. A Theory of In
entives in Pro
urementand Regulation // MIT Press, 1993.3. Spulber D.F. E�uent regulation and long-run optimality //Journal of Environmental E
onomi
s and Management, Vol. 12,(1985) pp. 103-116.4. Polterovi
h V. Elements of the Reform Theory // Mos
ow,Ekonomika, (2007)
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4-step fore
asting transport modelwith trip 
haining behaviour∗A.S. Aliev, D.S. Mazurin, A.A. Fedotov, and V.I. ShvetsovInstitute for Systems Analysis, Federal Resear
h Center ¾ComputerS
ien
e and Control¿ of Russian A
ademy of S
ien
es, Mos
ow, RussiaWe 
onsider the problem of modeling and fore
ast of tra�
 andpassenger �ows in a large 
ity. The standard approa
h to solving thisproblem is a 4-step s
heme [1, 2℄, whi
h in
ludes (1) trip generation, (2)trip distribution, (3) modal split, and (4) tra�
 assignment. The mainadvantage of this approa
h is the simpli
ity of data preparation andsoftware implementation and relatively low 
onsumption of 
omputerresour
es, whi
h allows for large s
ale network modeling. However, thestandard 4-step s
heme does not a

ount for some important aspe
ts oftravel behaviour, one of whi
h is the interrelationship between trips, thatform 
hains of trips. We presents a 
ombined approa
h, whi
h allows totake into a

ount a major impa
t of trip 
hains while maintaining the
omputational simpli
ity of the 4-step s
heme.The movements of people form a 
hains that start and end at thesame pla
e, usually at home. Various mobility surveys show that themost 
ommon trip 
hains are 
hains with single destination Home →Obje
t → Home and 
hains of three trips Home → Obje
t 1 → Obje
t 2

→ Home. One more fairly 
ommon 
hain Home → Obje
t 1 → Obje
t 2
∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h, Grant�13-01-12030.
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→ Obje
t 1 → Home is splitting on two simple 
hains: Home → Obje
t 1
→ Home and Obje
t 1 → Obje
t 2 → Obje
t 1. Other trip 
hains in thedemand stru
ture 
an be negle
ted.The set of trip 
hains with 
ertain purposes in 
ertain periods ofday (early morning, morning peak, midday o�-peak, evening peak, lateevening, night) will be referred to as demand element (for instan
e, HomeMorning peak−−−−−−−−−→ Work Evening peak−−−−−−−−→ Home). We evaluate distribution of trip
hains over demand elements based on various mobility resear
hes.The 
al
ulation of trip matri
es in
ludes 
al
ulation of daily matri
esfor ea
h demand stratum, followed by 
al
ulation of hourly mode-spe
i�
matri
es (by foot, by 
ar and by publi
 transport) for ea
h time period[3℄. We assume that people usually do not 
hange mode during the 
hainof trips. Thus will apply the same splitting 
oe�
ients to all trips ina single 
hain. These 
oe�
ients are evaluated separately for demandelements.Modal split 
oe�
ients depend on the generalized travel 
osts fordi�erent modes. Travel 
osts are 
omposed of the following 
omponents:

• for private transport:� starting time (assigned to 
onne
tors from zones),� travel time (road links and turns),� operating 
osts (road links),� toll roads fee (road links),� parking fee in 
ertain areas (
onne
tors to zone).
• for publi
 transport:� waiting and boarding time (boarding links),� travel time (a

ording to a time tables),� the fare payment (a �xed payment or a distan
e-dependentpayment).For evaluation of the modal split we divide the population into two
lasses based on 
ar ownership (a

ess to a 
ar). Thus 
ar owners havea 
hoi
e of three modes, while the others have only two alternatives(ex
luding 
ar). The proportion of populations of these 
lasses variesover the territory of modelling.We also use a similar modeling framework for freight transport, whi
hin
lude the following steps (for ea
h 
lass of tra
ks):
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ed and attra
ted by azone for ea
h demand stratum.2. Cal
ulation of daily matri
es for ea
h demand stratum.3. Cal
ulation of hourly matri
es, taking into a

ount the restri
tionsof entry and moving of tru
ks of 
ertain 
lasses in 
ertain areas ofthe 
ity, applied at 
ertain time periods.To implement this freight transport modeling framework thefollowing inputs are required:
• freight demand stru
ture des
ription:� freight trips generators and attra
tors 
lassi�
ation (parkingstations, warehouses, fa
tories, malls, shops, et
.),� freight trip 
hains des
ription (in
luding intermediate tripsmultipli
ity),� trip 
hains distribution by tru
k type (light, medium andheavy tru
ks),� trip distribution by time of day for ea
h trip 
hain,
• generators/attra
tors spatial distribution with their attributes.The proposed modeling framework was implemented for the tra�
model of the Mos
ow agglomeration. Model 
alibration was based ona hierar
hi
al data stru
ture [4℄, whi
h implies step-by-step 
alibration,starting with daily 
itywide indi
ators and then moving towards detailson the time of day, 
ity zones, et
. A databank for 
alibration of theMos
ow tra�
 model in
ludes:
• tra�
 
ounts on roads;
• passenger 
ounts at subway and suburban railway stations;
• passenger 
ounts at bus stops near subway stations;
• average travel times of typi
al routes at di�erent time periods of aday. Referen
es1. Shvetsov V.I. Mathemati
al modeling of tra�
 �ows //Automation and Remote Control. 2003. No 11. P. 3�46.
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2. Ortuzar J. de D. and Willumsen L.G. Modelling Transport. Wiley,2011.3. Aliev A.S., Mazurin D.S., Maksimova D.A., and Shvetsov V.I. Thestru
ture of the 
omplex model of the transport system of Mos
ow// Pro
eedings of the ISA RAS. 2015. V. 65, No 1. P. 3�15. (inrussian)4. Mazurin D.S. and Shvetsov V.I. Data stru
ture for 
ity tra�
model 
alibration // Pro
eedings of the ISA RAS. 2015. V. 65,No 1. P. 16�23. (in russian)The tra�
 �ow simulation in a growingurban infrastru
ture with using a tool set for
reating intera
tive virtual environmentsV.V. Gribova, N.B. Shamray, and L.A. Fedoris
hevInstitute of Automation and Control Pro
esses FEB RAS, Vladivostok,Russian FederationMathemati
al equilibrium models and the spe
ialized software basedon them are one of the e�e
tive tools to support managerial de
isionsin the transportation planing. Su
h models 
onsider the tra�
 �ow as aentire unit and make it possible to predi
t the tra�
 volume and tra�
assignment in the network with �ow-dependent travel 
osts.Predi
tive modelling of tra�
 �ows 
onsists of solving the followingproblems [1℄: 1) trip generation; 2)trip distribution; 3) model split; 4)route assignment. The problems are 
onsidered in su

ession, the outputfrom one problem is being the input to the next one. In order to a
hievean agreement between the results of problem solutions the pro
ess haveto be repeated many times.The fore
ast 
ongestion of the transportation network is determinedat the fourth step. The basi
 assumption 
on
erning the way the networkusers 
hoose their routes is usually made a

ording to the so-
alledWardrop's �rst behavioural prin
iple: drivers use only routes 
orrespon-ding to minimal travel 
osts [2℄.Despite the many advantages the 
urrent software of tra�
 predi
tionhas two drawba
ks 1) it does not 
ontain implementations of re
entadvan
es of the mathemati
al modelling of tra�
 �ows; 2) it requirespreliminary training to be installed, supported and used.In this paper the 
on
ept of the 
loud servi
e for intera
tive modellingof transport �ows in a growing 
ity infrastru
ture will be des
ribed.The main purpose of the servi
e is operative evaluation of the network
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ongestion as a result of various modi�
ations of network elements and
hanges in the arrangement and designation of town planning obje
ts.The fore
ast of tra�
 �ows is realized on the bases of the mathe-mati
al model whi
h is the result of synthesis of the gravity model ofdes
ription of trip distributions [3℄ and multimodal network equilibriumproblem with elasti
 demand [4℄. Equilibrium tra�
 �ow pattern isde�ned as the solution of the following variational inequality
F (x∗)(x− x∗)− 1

λ

∑

m ∈ M
(i, j) ∈ O × D

ln




oidjρ
∗
mij

(
∑

m∈M
ρ∗mij)

2


 (ρmij − ρ∗mij) ≥ 0,

(x, ρ) ∈ Ω =



(x, ρ) ≥ 0 :

∑

p∈Pij

xmp = ρmij , m ∈ M, (i, j) ∈ O ×D,

∑

j∈D

∑

m∈M
ρmij = oi,

∑

i∈O

∑

m∈M
ρmij = dj , (i, j) ∈ O ×D



 ,where M, O and D are the sets of modes, origins and destinations, Pijis the set of alternative routes for OD-pair (i, j) ∈ O × D, x = (xmp :

m ∈ M, p ∈ Pij , (i, j) ∈ O × D) and F (x) = (Fmp(x) : m ∈ M, p ∈
Pij , (i, j) ∈ O×D) are the route �ow ve
tor and the travel 
ost mapping,
ρ = (ρmij : m ∈ M, (i, j) ∈ O × D) is the 
orresponden
e matrix, oiand dj are the total number of trips generated by the origin i ∈ O andabsorbed by the destination j ∈ D, λ > 0 is the 
alibration 
oe�
ient.The solution of the variational inequality substitutes the last threestages of the four-phases iterative pro
ess of tra�
 modelling, whi
h, inturn, improves 
alibration of the 
al
ulations and leads to more reliableresults of tra�
 modelling. The assumption that the travel 
ost Fmp(x)is the fun
tion of the load a
ross the entire network allows us to 
apturesupplementary �ow relationships su
h as intera
tions among vehi
les ondi�erent road links and turning priorities in jun
tions and et
.A tool set for 3D visualization and tra�
 �ows modeling is imple-mented. The tool set is a 
loud servi
e, whi
h 
onsists of three modules:a simulation module, a 
ontrol module, and a visualization module.The simulation module is realized on a high-performan
e server plat-form, 
ontrol and visualization modules are realized on the IACPaaS
loud platform [5℄. Communi
ation between the platforms based on asyn-
hronous dynami
 http-queries.
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The simulation module results are transmitted to the 
ontrol module,whose main tasks are: pro
essing, analysis and transmission of informa-tion between the modules in spe
i�
 for ea
h module formats. Analysis ofthe data in the 
ontrol module is 
arried out using a virtual environmentmodel [6℄. The virtual environment model has a de
larative represen-tation. Pro
essing and analysis results are transmitted to the visualiza-tion module in the same de
larative format. The main 
omponent of thevisualization module is interpreter. It provides 3D visualization and aprogram logi
 using the virtual environment model.Referen
es1. Patriksson M. The tra�
 assignment problem: models andmethods. Utre
ht, The Netherlands: VSP. 1994.2. Wardrop J. Some theoreti
al aspe
ts of road tra�
 resear
h //Pro
eedings of the institute of Engineers. Part II. 1952. V. 1.P. 325�378.3. Erlander S., Stewart N.T. The gravity model in transportationanalisis: theory and extensions. Utre
ht, The Netherlands: VSP.1990.4. Dafermos S. The general multimodal network equilibrium problemwith elasti
 demand // Networks. 1982. V. 12, No 1. P. 57�72.5. Gribova V.V, Kles
hev A.S., Krylov D.A., Moskalenko F.M., Sma-gin S.V., Tim
henko V.A., Tyutyunnik M.B., Shalfeeva E.A. Re-sear
h proje
t IACPaaS. Extensible information and software 
om-plex for development, 
ontrol, and usage of intelligent softwarebased on 
loud 
omputing // Iskusstvennyi intellekt i prinyatiereshenii. 2011. No. 1. pp. 27�35 (in Russian).6. Gribova V.V., Fedoris
hev L.A. Virtual tea
hware and tools for its
reation // Vestnik informa
ionnyh i komp'yuternyh tehnologii.2012. No. 3. pp. 48�51 (in Russian).Intermediate universal gradient method withinexa
t ora
le∗D. KamzolovMos
ow Institute of Physi
s and Te
hnology, Mos
ow, RussiaWe 
onsider the following 
onvex 
omposite optimization problem[1℄:
F (x) = f (x) + h (x) → min

x∈Q
.

∗This resear
h is supported by grant RFBR 15-31-20571 mol-a-ved.
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 189De�nition 1. [1℄ Let fun
tion f be 
onvex on 
onvex set Q. We saythat it is equipped with a �rst-order (δ, L)-ora
le if for any y ∈ Q we
an 
ompute a pair (fδ,L (y) , gδ,L (y)), su
h that for all x ∈ Q

0 ≤ f (x)− (fδ,L (y) + 〈gδ,L (y) , x− y〉) ≤ L

2
‖x− y‖2 + δ.Constant δ will be 
alled a

ura
y of the ora
le. A fun
tion h(x) havesimple stru
ture and it's easy to 
ompute it without an ora
le.Statement 1. [1℄ Composite fast gradient method(FGM)Yu.E.Nesterov with (δ, L)-ora
le 
onverges with

F
(
yN
)
− F∗ ≤ ε, N = O

(√
LR2

ε

)
, δ ≤ O

( ε
N

)
.where (N � a number of 
alling ora
le). Up to 
onstant estimations areoptimalStatement 2. [1℄We introdu
e oneparametri
 
lass with parameter

p ∈ [0, 1]) of intermediate gradient methods with su
h 
onvergen
e rate
F
(
yN
)
− F∗ ≤ ε, N = O

((
LR2

ε

) 1
p+1

)
, δ ≤ O

( ε

Np

)
. (1)Statement 3. [1℄ Let

‖∇f (y)−∇f (x)‖∗ ≤ Lν ‖y − x‖ν (2)with some ν ∈ [0, 1]. Then
0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2 + δ,ãäå L = Lν ·

[
Lν

2δ
1−ν
1+ν

] 1−ν
1+ν

.Statement 4. From (1) For the intermediate gradient method wederive su
h 
onvergen
e rate [2℄
F
(
yN
)
− F∗ ≤ ε, N = O

(
inf

ν∈[0,1]

(
LνR

1+ν

ε

) 2
1+2pν+ν

)
,where δ ≤ O

(
ε

Np

)
, p ∈ [0, 1].
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Proof For inexa
t ora
le:
0 ≤ f(y)− f(x)− 〈∇f(y)−∇f(x)〉 ≤ L

2
‖y − x‖2 + δwe have estimation

N = O

((
LR2

ε

) 1
p+1

)
, δ ≤ O

( ε

Np

)
.Let use the notion of (δ, L)-ora
le for solving the problems with exa
t�rst-order information but with a lower level of smoothness.

L = Lν

[
Lν

2δ

1− ν

1 + ν

] 1−ν
1+ν

.It means that our estimation 
hanges su
h way:
N = O

((
LR2

ε

) 1
p+1

)
= O



(
R2

ε
Lν

[
Lν

2δ

1− ν

1 + ν

] 1−ν
1+ν

) 1
p+1


 =

= O

((
R2ε−1L

2
1+ν
ν δ

ν−1
1+ν

) 1
p+1

)
⇒

Np+1 ∼ R2ε−1L
2

1+ν
ν δ

ν−1
1+ν ∼ R2ε−1L

2
1+ν
ν

( ε

Np

) ν−1
1+ν ∼

∼ R2ε
−2
1+νL

2
1+ν
ν N− pν−p

1+ν ⇒

Np+1+ pν−p
1+ν ∼ L

2
1+ν
ν R2ε

−2
1+ν ⇒

N
pν+p+ν+1+pν−p

1+ν ∼
(
LνR

1+ν

ε

) 2
1+ν

⇒

N1+2pν+ν ∼
(
LνR

1+ν

ε

)2

⇒

N ∼
(
LνR

1+ν

ε

) 2
1+2pν+ν

⇒
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F (yN )− F∗ ≤ ε,N = O

((
LνR

1+ν

ε

) 2
1+2pν+ν

)
, δ ≤ O

( ε

Np

)
.�This method has a very good appli
ation in transport problems. We
ould use it to solving dual optimization problem in sear
hing equilibriain mixed models of �ow distribution in large transport networks.Referen
es1. Devolder O., Glineur F., Nesterov Yu.E. "First-order methods ofsmooth 
onvex optimization with inexa
t ora
le."Springer, 20132. Gasnikov A., and Kamzolov D., Mendel M. "Universal 
ompositeprox-method for stri
tly 
onvex optimization problems"2016.http://arxiv.org/abs/1603.077013. Anikin A.S., Gasnikov A.V., Semenov V.V. "Parallelizabilitydual method for sear
hing equilibria in mixed models of �owdistribution in large transport networks."ORM 2016Empiri
al syn
hronized �ow in oversaturated
ity tra�
B.S. Kerner1, P. Hemmerle2, M. Koller2, G. Hermanns1, S.L. Klenov3,H. Rehborn2, and M. S
hre
kenberg1

1Physik von Transport und Verkehr, Universit�at Duisburg-Essen, 47048Duisburg, Germany,
2Daimler AG, RD/RTF, HPC: 059-X832, 71063 Sindel�ngen,Germany,

3Mos
ow Institute of Physi
s and Te
hnology, Department of Physi
s,141700 Dolgoprudny, Mos
ow Region, RussiaBased on a study of anonymized GPS probe vehi
le tra
es measuredby personal navigation devi
es (PND) in vehi
les randomly distributed in
ity tra�
, empiri
al syn
hronized �ow in oversaturated 
ity tra�
 hasbeen revealed. It turns out that real oversaturated 
ity tra�
 resultingfrom speed breakdown in a 
ity in most 
ases 
an be 
onsidered randomspatiotemporal alternations between regular sequen
es of moving queuesand syn
hronized �ow patterns (SP) in whi
h the moving queues do noto

ur. This work relies on the results in [1℄.Con
lusions: In real oversaturated 
ity tra�
 
aused by speedbreakdown, the following empiri
al mi
ros
opi
 spatiotemporal tra�
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Fragment of typi
al empiri
al mi
ros
opi
 spatiotemporal stru
ture ofoversaturated 
ity tra�
: (a) Vehi
le traje
tories of probe vehi
les onroad se
tion measured on February 05, 2013. (b) Mi
ros
opi
(single-vehi
le) speeds (bla
k squares) along vehi
le traje
tories shownby the same numbers in (a). Dashed-dotted lines show tra�
 signallo
ation in (a) and time instan
es of vehi
le passing the signal in (b).
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Explanations of oversaturated tra�
 in 
lassi
al theory (a, b) [3℄ andthree-phase theory (
�f) [4℄: (b, 
) Simulations of speed in movingqueues (b) and SPs (
). J � line J , qsat is a saturation �ow rate, F �free �ow, S � syn
hronized �ow.
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patterns have been revealed: (i) Empiri
al syn
hronized �ow patterns(SP). (ii) Classi
al regular sequen
es of moving queues. (iii) Randomspatiotemporal alternations between regular sequen
es of moving queuesand SPs. (iv) Simultaneous o

urren
e of SPs and moving queues indi�erent road lanes. Empiri
al probability of speed breakdown in 
itytra�
 is well-des
ribed by a theoreti
al one found in [2℄.Referen
es1. B. S. Kerner, P. Hemmerle, M. Koller, G. Hermanns, S. L. Klenov,H. Rehborn, M. S
hre
kenberg, Phys. Rev. E 90 032810 (2014).2. B.S. Kerner, Phys. Rev. E 84, 045102(R) (2011); B.S. Kerner,Europhys. Lett. 102, 28010 (2013); B.S. Kerner, Physi
a A 39776�110 (2014).3. F.V. Webster, Road Resear
h Te
hni
al Paper No. 39, RoadResear
h Laboratory, London, UK (1958); G.F. Newell, SIAMReview, 575, 223�240 (1965).4. B.S. Kerner, S.L. Klenov, G. Hermanns, P. Hemmerle, H. Rehborn,and M. S
hre
kenberg, Phys. Rev. E 88, 054801 (2013).Phase transitions in deterministi
 tra�
 �owmodelsA.A. Lykov, V.A. Malyshev, and M.V. MelikianLomonosov Mos
ow State University, Mos
ow, RussiaTheoreti
al modelling and 
omputer simulation of transportationsystems is a very popular �eld, see very impressive review [2℄. There aretwo main dire
tions in this resear
h - ma
ro and mi
ro models. Ma
roapproa
h does not distinguish individual transportation units and usesanalogy with the �uid �ow in hydrodynami
s, see [1℄. Sto
hasti
 mi
romodels are most popular and use almost all types of sto
hasti
 pro
esses:mean �eld, queueing type and lo
al intera
tion models. We 
onsider here
ompletely deterministi
 transportation �ows. Although not as popularas sto
hasti
 tra�
, there is also a big a
tivity in this �eld, see [3,4,5,6℄.In these papers interesting results are obtained for su�
iently generalproto
ols.Here we follow another strategy: for simplest possible proto
ols we tryto get results as 
on
rete as possible. Namely, we 
onsider the one-wayroad tra�
 model organized as follows.At any time t ≥ 0 there is �nite or in�nite number of point parti
les(may be 
alled also 
ars, units et
.) with 
oordinates zk(t) on the real
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... < zn(t) < ... < z1(t) < z0(t) (1)We assume that the rightmost 
ar (the leader) moves �as it wants�, thatis the traje
tory z0(t) is often assumed to have non	negative velo
ity.Our problem is to �nd the simplest possible lo
al proto
ol (
ontrolalgorithm) whi
h would guarantee both safety (no 
ollisions), stable(or even maximal) density of the �ow or maximal 
urrent. Otherwisespeaking, we try to �nd 
ontrol me
hanism whi
h guarantees that thedistan
e between any pair of neighbouring 
ars is 
lose (on all timeinterval (0,∞)) to some (given a priori) �xed number, that de�nes thedensity of the �ow.More exa
tly, denoting rk(t) = zk−1(t)− zk(t), and

I = inf
k>1

inf
t>0

rk(t), S = sup
k>1

sup
t>0

rk(t),we try to get the bounds - lower positive bound on I and upper boundon S - as 
lose as possible.Lo
ality (of the 
ontrol) means that the �driver� of the k-th 
ar,at any time t, knows only its own velo
ity vk(t) and the distan
e
rk(t) from the previous 
ar. Thus, for any k ≥ 1 the traje
tory zk(t),being deterministi
, is uniquely de�ned by the traje
tory zk−1(t) of theprevious parti
le.Using physi
al terminology one 
ould say that if, for example, rk(t)be
omes larger than d, then some virtual for
e Fk in
reases a

elerationof the parti
le k, and vi
e-versa. Thus the 
ontrol me
hanism is ofthe physi
al nature, like for
es between mole
ules in 
rystals but our�for
es� are not symmetri
. Thus our system is not a hamiltonian system.Nevertheless, our results resemble the dynami
al phase transition in themodel of the mole
ular 
hain rapture under the a
tion of external for
e,see [7℄. However here we do not need the double s
aling limit used in [7℄.We will see however that for the stability, besides Fk, also fri
tionfor
e −αvk(t), restraining the growth of the velo
ity vk(t), is ne
essary,where the 
onstant α > 0 should be 
hosen appropriately. Taking Fk tobe simplest possible

Fk(t) = ω2(zk−1(t)− zk(t)− d) (2)we get that the traje
tories are uniquely de�ned by the system of
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equations for k ≥ 1

d2zk
dt2

= Fk(t)− α
dzk
dt

= ω2(zk−1(t)− zk(t)− d)− α
dzk
dt

(3)Stability depends not only on the parameters α, ω, d but also on theinitial 
onditions and on the movement of the leader (on its velo
ity anda

eleration). This is easy to understand for the 
ase of N +1 parti
les.For example, for N = 1, where the 
al
ulations are 
omp	letely trivial,assume also the simplest leader movement
z0(t) = vt, t ≥ 0 (4)Then, if initial 
ondition for the se
ond parti
le are

z1(0) = −a = −(d+
α

ω2
v), ż1(0) = v,then z1(t) = −a + vt for any d, α, ω. However, if we 
hange only theinitial velo
ity ż1(0) = w to some w > 0, then for any α, ω there exists

w1 = w1(α, ω, d) su
h that for any w ≥ w1 
ollision o

urs.For N = 2, 3, ... the situation be
omes more and more 
ompli
ated,and its study has no mu
h sense. That is why we study, in the spa
e oftwo parameters α, ω (for �xed d), stability 
onditions, whi
h are uniformin N and in large 
lass of reasonable initial 
onditions and reasonablemovement of the leader.Natural (reasonable) initial 
onditions are as follows: at time 0 itshould be
0 < inf

k>1
rk(0) ≤ sup

k>1
rk(0) <∞As for the leader movement, it is sometimes su�
ient to assume thatthe fun
tion z0(t) were 
ontinuous, but in other 
ases it is assumed totwi
e di�erentiable and has the following bounds on the velo
ity anda

eleration of the leader:

sup
t>0

|ż0(t)| = vmax, sup
t>0

|z̈0(t)| = amax, (5)It appears that under these 
onditions there are 3 se
tors in thequarter-plane R2
+ = {(α, ω)}: 1) α > 2ω, where we 
an prove stability,2) α <

√
2ω, where we 
an prove instability, and the se
tor 3) √2ω ≤

α ≤ 2ω, where we 
an prove stability only for more restri
ted 
lasses ofinitial 
onditions and of the leader motion.
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h. Under 
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onditionsa tra�
 �ow 
an be 
onsidered as a �ux of spe
ial parti
les. We denotedensity and velo
ity of tra�
 �ow on a neighbourhood of x at themoment t as ρ(x, t) and v(x, t), respe
tively. The value of �ow q(x, t)is the average amount of vehi
les, that passed throw the point x inthe unitary interval of time (for example an hour) at the moment t.These quantities are related by the 
onservation law, the 
ontinuityof �ow and the equation of state. They are similar with ones fromthe hydrodynami
s. The 
ar velo
ity should be high if the density is low,and 
ontroversially otherwise. Therefore we 
an assume that velo
ity isa 
ertain steadily de
reasing fun
tion of the density
v = V (ρ), V = V (ρ) ↓, 0 6 ρ 6 ρmax. (1)
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Here ρmax is the value 
orresponds to a tra�
 jam. One of the mostimportant relation is
q = Q(ρ), 0 6 ρ 6 ρmax, (2)whi
h 
alled the fundamental diagram. This dependen
e between the �owvalue and the density plays the key role in the tra�
 �ow theory.In this report we dis
uss some problems 
onne
ted withre
onstru
tion of the dependen
e (1) and (2) using 
omputer simulation.We introdu
e a program �Cars� that simulates a tra�
 �ow usingmi
ros
opi
 approa
h. Therefore, every vehi
le is treated as an individualobje
t. It has the set of parameters, su
h as length, maximum speed,maximum and minimum a

eleration and de
eleration and so on. Allthese parameters 
orrespond with the real values. Every 
ar movesusing the same algorithm that prevents a 
olliding but allows to moveas qui
kly as possible. The algorithm handles the data available toan �ordinary� driver. The 
ontrol parameter is the a

eleration of thevehi
le. The 
on�guration of the road is a single�lane one�way road. Wealso examine a ring road that allows us to study an autonomous 
lustersof 
ars. Using our program we 
an obtain a numerous amount of data.Then we use these data for establishing 
onne
tions between variablesand for revealing some typi
al phenomena.We emphasize some themati
s of our resear
h:1. Conne
tion between ma
ros
opi
 quantities ρ, v, q withmi
ros
opi
 parameters of individual 
ars;2. O
ular demonstration of mathemati
al e�e
ts whi
h exist in quasi-linear equation theory (strong dis
ontinuity, sho
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eedings of the Royal
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Asymptoti
 analysis of
omplex sto
hasti
 systems
Limit theorems for multi
hannel queuingsystems with abandonmentsL.G. Afanasyeva and A.V. Tka
henkoLomonosov Mos
ow State University, Mos
ow, RussiaWe 
onsider queuing systems with r heterogeneous 
hannels.Theservi
e time ηin of the n-th 
ustomer by the i-th server has distributionfun
tion Bi(x) with �nite mean β−1

i . Let β =
∑r

i=1 βi. Customers areserved in order of their arrivals at the system. Servi
e times of 
ustomersare independent random variables.The input �ow X(t) is assumed to be regenerative. Let θi be the
i-th regeneration point of X(t), τi = θi − θi−1, ξi = X(θi) − X(θi−1)(i = 1, 2, . . . ; θ0 = 0). Then τi is the regeneration period, ξi is the numberof 
ustomers arrived during the i-th regeneration period. Assume that
a = Eξi <∞, τ = Eτi <∞, and λ = lim

t→∞
X(t)
t = aτ−1 a.s..Let {vn}∞n=1 be the sequen
e of independent identi
al distributedrandom variables and it does not depend on the input �ow and servi
etimes. The random variable vn 
an be an improper one, i.e. α = P{vn =

∞} ≥ 0. Denote C(x) = P{vn ≤ x|vn < ∞}. Moreover vn bounds thewaiting time of the nth 
ustomer in the system, i.e. if the nth 
ustomerdoes not start it's servi
e during the time vn then it leaves the systemwithout servi
e at all. Let q(t) be a number of 
ustomers in the system attime t. Under some additional assumptions q(t) is a regenerative pro
essand θi is it's point of regeneration if q(θi − 0) = 0.Theorem 1. The pro
ess q(t) is ergodi
 i� ρ = αλβ−1 < 1.
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hasti
 boundednessand ergodi
ity of the regenerative pro
ess proved in [Afanasyeva,Tka
henko, 2014℄ and 
onstru
tion of majorizing pro
ess. Then resultsfor regenerative pro
ess with �nite mean of the period of regeneration[Thorisson, 1987℄ are applied.First we give the following result 
on
erning so 
alled super-heavytra�
 situation (ρ ≥ 1).Theorem 2. If ρ > 1 (ρ = 1) and for some δ > 0

Eτ2+δ
1 <∞, Eξ2+δ

1 <∞, E(ηi1)
2+δ <∞, i = 1, r, (⋆)then the normalized pro
ess q̂n(t) = q(nt)−β(ρ−1)nt

σ̂
√
n

weakly 
onverges onany �nite interval [0, t] to Brownian motion (absolute value of Brownianmotion) as n→ ∞. Here
σ̂2 = σ2

X + σ2
β , σX =

ασ2
ξ

τ
+

(αa)2σ2
τ

τ3
− 2aα2cov(ξ1, τ1)

τ2
,

σ2
β =

r∑

i=1

σ2
i β

3
i , σ

2
τ = V ar(τ1), σ

2
ξ = V ar(ξ1), σ

2
i = V ar(ηi1), i = 1, r.In order to prove this theorem we use Brownian approximation formodi�ed multi
hannel systems [Iglehart, Whitt, 1970℄ and 
onstru
t twomajorizing systems.Se
ond we fo
us on the pro
ess q(t) in the heavy-tra�
 situation(ρ ↑ 1). We 
onsider time-
ompression asymptoti
. Namely the input�ow is given by the relation

Xn(t) = X

(
ρ−1

(
1− 1√

n

)
t

)so that the tra�
 
oe�
ient depends on the parameter n and ρn ↑ 1as n → ∞. Let qn(t) be the pro
ess q(t) for the system with input �ow
Xn(t).Theorem 3. Under 
onditions (⋆) the normalized pro
ess q̃n(t) =
qn(nt)√

n
weakly 
onverges on any �nite interval [0, t] as n → ∞ to thedi�usion pro
ess with re�e
ting at the origin and 
oe�
ients (−β, σ̃2),where σ̃2 = σ2

β +
σ2
X

ρ .The proof is based on the 
onstru
tion of the fun
tional limit of the�uid pro
ess [Whitt, 2002℄ and some estimates for number of 
ustomersin the system.



202 Asymptoti
 analysis of 
omplex sto
hasti
 systemsReferen
es1. Afanasyeva, L. and Tka
henko, A., Multi
hannel QueueingSystems with Regenerative Input Flow // Theory of Probabilityand Its Appli
ations, 2014, V.58, No. 2, P. 174�192.2. Thorisson, H., A 
omplete 
oupling proof of Bla
kwell`s renewaltheorem// Sto
hasti
 Pro
esses and Their Appli
ations, 1987, V.26, P. 87�97.3. Iglehart, D.L. and Whitt, W., Multiple Channel Queues in HeavyTra�
. I // Advan
es in Applied Probability, 1970, V. 2, No. 1, P.150�177.4. Whitt W. Sto
hasti
-pro
ess limits: an introdu
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hasti
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ien
eand Business Media, 2002.Waiting-time tail probabilities in queue withregenerative input �ow and unreliable serverS.Z. AibatovLomonosov Mos
ow State University, Mos
ow, RussiaWe 
onsider a single-server queueing system with a regenerative input�ow A(t) (Reg/G/1). Here A(t) is the number of 
ustomers arrivedduring [0, t]. The random variable θi is said to be the ith regenerationmoment of A(t) and τi = θi − θi−1 is the ith regeneration period. Let
ξi = A(θi − 0) − A(θi−1) be the number of arrived 
ustomers duringthe ith regeneration period. Assume that Eξi < ∞ and Eτi < ∞. Theintensity of A(t) is the limit λ = lim

t→∞
A(t)
t with probability one (w.p.1).It is easy to see that λ = Eξ1

Eτ1
.Assumption 1.The greatest 
ommon divisor of numbers (i =

1, 2, . . . ) su
h that P(ξ1 = i) > 0 is equal to one.Servi
e times of 
ustomers are de�ned by the sequen
e {ηn}∞n=1 that
onsists of i.i.d. random variables and does not depend on A(t). Thedistribution fun
tion of η1 is B(x), b = Eη <∞ and b(s) = Ee−sη1 .Let W (t) be the virtual waiting time pro
ess and Wn = W (θn − 0),
wn = W (tn − 0). Here tn is the moment of the nth 
ustomer arrivalat the system. De�ne fun
tions Ψ(x) = lim

t→∞
P(W (t) ≤ x), Φ(x) =

lim
n→∞

P(Wn ≤ x) and F (x) = lim
n→∞

P(wn ≤ x).It is known (see e.g. [1℄) that Ψ(x), Φ(x) and F (x) are distribution
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tions if and only if the tra�
 intensity
ρ = λb < 1.Here we aim to analyze the asymptoti
 behavior of fun
tions Ψ(x), Φ(x)and F (x) as x→ ∞. For any distribution fun
tion F (x) we put F̄ (x) =

1−F (x). As usual f(x) ∼ h(x) as x→ ∞ if lim
x→∞

f(x)
h(x) = 1. As in [3℄, wede�ne the following 
lass of distributions.De�nition 1.A distribution fun
tion F (x) on R with �nite meanbelongs to the 
lass of the strong subexponential distributions if

∫ x

0

F̄ (x− y)F̄ (y)dy ∼ 2mF̄ (x),where m =
∫∞
0 F̄ (y)dy.Theorem 1.Let B(x) be a strong subexponential distribution fun
tionand Assumption 1 be ful�lled.(i) If there exists c > b su
h that P(ξ > x/c) = o(B̄(x)), then

Φ̄(x) ∼ λ

1− λb

∫ ∞

x

B̄(y)dy as x→ ∞. (1)(ii) If there exists c > b su
h that √P(ξ > x/c) = o(B̄(x)), then (1)holds for the fun
tion F̄ (x).(iii) If there exists c > b su
h that √P(ξ > x/c) = o(B̄(x)), Eτ2 < ∞,then (1) holds for the fun
tion Ψ̄(x).Further we 
onsider a queueing system Reg/G/1 with an unreliableserver. The breakdowns of the server o

ur only when it is o

upied by a
ustomer. Besides, if the server is in the working state then breakdownsappear at random in the sense that the time until the next breakdownis exponentially distributed with a parameter ν. After breakdown theserver is repaired during the random time with distribution fun
tion
D(x), mean d and d(s) =

∞∫
0

e−sxdD(x). There are various dis
iplinesfor 
ontinuation of the servi
e after server restoration. Here we 
onsiderthe preemptive repeat di�erent servi
e dis
ipline when servi
e is repeatedfrom the start and the servi
e time after restoration is independent ofthe origin servi
e time. This dis
ipline was 
onsidered in the pioneeringpaper [4℄ where the notion of 
ompletion time was introdu
ed. This
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 systemsnotion made it possible to apply results for systems without interruptionsto investigate a system with unreliable server. Let us remind that
ompletion time is the sojourn time of the 
ustomer on the server withregard of repairs of the server (if there are). Introdu
e the distributionfun
tion of 
ompletion time Bc(x) and mean bc, then
B̄c(x) ∼

1− b(ν)

b(ν)
D̄(x) as x→ ∞,

bc =
1− b(ν)

b(ν)

(
1

ν
+ d

)
.Corollary 1. For a queueing system with an unreliable server let thedistribution fun
tion of the repair time D(x) be strong subexponential.All 
onditions from (iii) of Theorem 1 are satis�ed with Bc(x) insteadof B(x) and Assumption 1 holds. Then

Φ̄(x) ∼ Ψ̄(x) ∼ F̄ (x) ∼ λ(1 − b(ν))

(1 − λbc)b(ν)

∫ ∞

x

D̄(y)dy as x→ ∞.As we 
an see from Corollary 1, if we have the preemptive repeatdi�erent servi
e dis
ipline then the distribution fun
tion of servi
e timehas no in�uen
e on asymptoti
 behavior of Ψ̄(x). A queueing system
M/G/1 with preemptive resume servi
e dis
ipline was 
onsidered in [2℄.For this dis
ipline the 
ustomer's servi
e after a restoration 
ontinuousfrom the point at whi
h it was interrupted. It was shown that if B(x)and D(x) are regularly varying distributions then

B̄c(x) ∼ B̄

(
x

1 + νd

)
+ νbD̄(x) as x→ ∞.Thus if the fun
tion D̄(x) is lighter than B̄(x) as x → ∞ then thedistribution B(x) de�nes asymptoti
s of Ψ̄(x).These results mean that the asymptoti
 behavior of Ψ̄(x) as x →

∞ is 
ompletely de�ned by the intensity λ of the input �ow and thedistribution fun
tion of the servi
e time (or repair time if the server isunreliable). Therefore the stru
ture of the input �ow does not play anyrole if 
ondition (iii) holds. This 
ondition means that the tail of ξ isessentially lighter than tail of η. We strongly believe that otherwise thedominate part may belong to the distribution of ξ.
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M/G/1/∞ with an unreliable server // Teor. Ver. Prim. 2016.V. 61, � 1. P. 1�9. (in Russian)3. Foss S., Korshunov D., Za
hary S. An introdu
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. B. 1962. V. 24, P. 73�90.Limit theorems for queuing system with anin�nite number of servers and regenerativeinput �owE.E. Bashtova and E.A. ChernavskayaLomonosov Mos
ow State University, Department of Mathemati
s andMe
hani
s, Mos
ow, RussiaThis paper fo
uses on a queuing system S with an in�nite numberof servers and regenerative input �ow X(t), given on (Ω,F ,P). Alltraje
tories are left-
ontinuous non-de
reasing fun
tions with integervalues, X(0) = 0. The de�nition of this pro
ess is [3℄.De�nition. The �ow X(t) is regenerative if there exists an in
reasingsequen
e of random variables {θi}i≥0, θ0 = 0, su
h that the sequen
e

{κi}∞i=0 = {(X(θi−1 + t)−X(θi−1)), θi − θi−1, t ∈ [0; θi − θi−1)}∞i=0
onsists of independent identi
ally distributed random elements on
(Ω,F ,P).The value θi is 
alled the i-th moment of regeneration, τi = θi − θi−1is the i-th period of regeneration.We assume that {τi}∞i=1 are independent identi
ally distributedrandom variables(i.i.d.r.v.), with distribution fun
tion F (x).Let ξi = X (θi)−X (θi−1) be the number of 
ustomers arrived duringthe i-th regeneration period.Servi
e times of 
ustomers {ηij , j = 1, . . . , ξi, i ≥ 1} are i.i.d.r.v. withdistribution fun
tion B(t). Denote B(t) = 1−B(t). We assume that thefollowing 
ondition is ful�lled.
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tion B(t) asymptoti
 behavior takes pla
e
B(t) ∼ L(t)

tβ
as t→ ∞,

0 < β < 1. Here L(t) is slowly varying fun
tion as t→ ∞[4℄.The fo
us of this paper is the pro
ess q(t), whi
h is the number of
ustomers in the system S at time t.Denote λ = 1
1−β

Eξ1
Eτ1

. Let us formulate our results.Theorem 1.Suppose that Eτr1 <∞, r > 2, Eξ21 <∞. Then
q(t)− λt1−βL(t)√

t1−βL(t)
d→ N (0, λ) , as t→ ∞.Theorem 2.Suppose that Eτr1 <∞, r > 2, Eξ21 <∞. Then

q(t)

t1−βL(t)
p→ λ, as t→ ∞.Des
ription of auxiliary systems and their relationship withthe initial. To study the asymptoti
 behavior of the queue length inthe system S we introdu
e two auxiliary systems. In the �rst system

S1 
ustomers enter only at the beginning of the regeneration period
[θi−1, θi], by group ξi , i ≥ 1. In the se
ond system group of 
ustomers
omes at the end of the period of regeneration, we denote it S2. Let
qi(t) be the number of 
ustomers in the system Si at time t respe
tively,
i = 1, 2.Let ∆(t) be the number of 
ustomers that left system S1, but notleft S2 at time t. For ∆(θn) the following representation holds

∆(θn) =
n∑

i=1

ξi∑

j=0

κij(θn),where κij(θn) = {1, θn − θi ≤ ηij < θn − θi−1,

0, otherwise.Note that q1(t), q2(t), and q(t) satisfy following relations withprobability 1
q1
(
θN(t)

)
≤ q(t) ≤ q2

(
θN(t)

)
+ξN(t)+1, q2

(
θN(t)

)
= q1

(
θN(t)

)
+∆

(
θN(t)

)
.
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ess q(t), we need limit theorems for q1 (θN(t)

), ξN(t)+1, ∆N(t).Some auxiliary results. Let us formulate the limit theorem for
q1
(
θN(t)

), ξN(t)+1, ∆ (θN(t)

). Denote En = 1
1−β

Eξ1
Eτβ

1

n1−βL(n).Theorem 3.Let Eτr1 <∞, r > 2, Eξ21 <∞. Then
q1(θn)− En√

En

d→N (0, 1) as n→ ∞.Lemma 1.Let Eξ1 <∞, Eτr1 <∞, r > 2. Then
∆(θn)

n
1−β
2

p→ 0, as n→ ∞.Lemma 2. For any k ∈ N

lim
t→∞

P
(
ξτN(t)+1

= k
)
=

1

Eτ1

∫ ∞

0

P (τ2 > x, ξ2 = k) dx.In order to obtain similar results for q1(θN(n)), and ∆(θN(n)) as inTheorem 3 and Lemma 1, we need the following Theorem.Theorem 4. (Theorem 5,[2℄) Let Yn d→ Y , n→ ∞ and1. Nn

n

p→ N , n→ ∞ with P(0 < N <∞) = 1,2. If Yn is R-mixing with respe
t to σ(N), that is, for ea
h A su
hthat P(N ∈ A) > 0 holds P(Yn ∈ ∗|N ∈ A) → P(Y ∈ ∗),3. if ∆n,c = max
|m−n|<nc

|Ym − Yn|, then
lim
c→0

sup
{B:P(B)>0}

lim sup
n→∞

P(∆n,c > ε|N ∈ B) = 0.Then YNn

d→ Y.Veri�
ation 
onditions of this theorem is based on results of followinglemmas. Let F be σ-algebra, formed by variables {ξi, θi}∞i=1.Lemma 3.Sequen
e {Zm = Ym − Yn}m≥n forms a 
onditional N -demimartingale given F [1℄.Lemma 4.Let Eτr1 < ∞, r > 2, Eξ21 < ∞. For any 
onstant 0 <
c < 1 there exists n0(c) su
h that for n > n0(c) we have the followinginequality for limits in probability
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n→∞

E
(
(Yn−Yn(1−c))

2|F
)

n1−βL(n)
≤ C1

(
1− c1−β − (1− c)1−β

)
+ C2c

1−β,2. lim
n→∞

E
(
(Yn−Yn(1+c))

2|F
)

n1−βL(n)
≤ C1

(
(1 + c)1−β − c1−β − 1

)
+ C2c

1−β.for some C1, C2 Referen
es1. Rao B. L. S. P. Asso
iated sequen
es, demimartingales andnonparametri
 inferen
e. - Springer S
ien
e & Business Media,2012.2. Durrett R. T., Resni
k S. I. Weak 
onvergen
e with random indi
es//Sto
hasti
 Pro
esses and their Appli
ations. - 1977. - T. 5. - No.3. - P. 213-220.3. Cox D. R. et al. Renewal theory. - London : Methuen, 1962. - T.1.4. Seneta E. Regularly varying fun
tions. - 1976.On ergodi
 averaging with and withoutinvariant measure∗M.L. BlankRussian A
ademy of S
i. Inst. for Information TransmissionProblems,and National Resear
h University Higher S
hool ofE
onomi
s, Mos
ow, RussiaThe 
lassi
al Birkho� ergodi
 theorem in its most popular versionsays that the time average along a single typi
al realization of a Markovpro
ess is equal to the spa
e average with respe
t to the ergodi
invariant distribution. This result is one of the 
ornerstones of the entireergodi
 theory and its numerous appli
ations. In this talk I'll addresstwo questions related to this subje
t: how large is the set of typi
alrealizations, in parti
ular when there are no invariant distributions, andhow this is 
onne
ted to properties of the so 
alled natural measures(limits of images of �good� measures under the a
tion of the system).Our main results 
on
ern with ne
essary and su�
ient 
onditionsunder whi
h for a given referen
e measure (e.g. Lebesgue measure),whose support might be mu
h larger than the support of the invariantone, the set of typi
al initial points is of full measure. It turns out that one
∗This resear
h is supported by RFBR and RNF grants.
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ity of the natural measure.To deal with the situation when the invariant measure does not exist weextend the notion of ergodi
ity to measures being non invariant.To give an example of a system without invariant distributionssatisfying our setup, 
onsider the following deterministi
 Markov pro
ess:a family of maps from the unit dis
 X := {(φ,R) : 0 ≤ φ < 2π, 0 ≤ R ≤
1} into itself de�ned in the polar 
oordinates (φ,R) by the relation:

T (φ,R) :=

:=

{
(φ + 2πα+ β(R − r) mod 2π, γ(R− r) + r) if r(R − r) 6= 0
(φ + 2πα mod 2π, (1 + r)/2) otherwisewith the parameters α, β, γ, r ∈ (0, 1). One 
an show that forany probability measure µ absolutely 
ontinuous with respe
t to theLebesgue measure, the sequen
e of measures 1

n

∑n−1
k=0 T

k
∗ µ (Cesaroaverages of images of the measure µ under the a
tion of T ) 
onvergesweakly to a 
ertain limit measure µT on the 
ir
le {R = r}, but thismeasure is no longer invariant. Depending on the 
hoi
e of the rotationparameters α, β ∈ (0, 1) properties of the set of µT -typi
al points turnout to be very di�erent. In parti
ular, if these parameters are rationallyindependent, the limit measure is unique and the set of µT -typi
al points
oin
ides with the entire unit disk.Questions dis
ussed above turn out to be espe
ially a
tual in the
ase of large systems, when even in the presen
e of ergodi
 invariantmeasures, their supports 
over only a small part of the phase spa
e.
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 behavior and stability of someapplied probability modelsE.V. BulinskayaLomonosov Mos
ow State University, Mos
ow, RussiaApplied probability resear
h domains su
h as insuran
e, inventoryand dams, �nan
e, queueing theory, reliability and some others 
an be
onsidered as spe
ial 
ases of de
ision making under un
ertainty (orrisk management) aimed at the systems performan
e optimization, thuseliminating or minimizing risk.The 
ru
ial question in all investigations pertaining to de
isionmaking is: How to 
hoose an appropriate mathemati
al model? Therealways exists a trade-o� between simpli
ity and pre
ision. A simplemodel gives a possibility of easily obtaining an expli
it solution. Howeverthe poor model �t is the �st sour
e of de
ision errors. A 
ompli
atedmodel giving pre
ise des
ription may also lead to errors. Namely,numeri
al solution needed for 
ompli
ated models and parametersvariability 
onstitute the se
ond sour
e of de
ision errors. Perturbationsof the underlying pro
esses provide the third sour
e of de
ision errors.Thus, the model stability to small �u
tuations of model parameters anddistributions of basi
 pro
esses is a must, see, e.g., [1�3℄ and referen
estherein.It is well known that the same mathemati
al model 
an arise invarious appli
ations. So, for 
ertainty, we are going to speak belowabout insuran
e models, although many 
on
lusions will be valid forother �elds. The primary task of insurer is redistribution of risks andsatisfa
tion of poli
yholders 
laims. This explains the popularity ofreliability approa
h, that is, thorough analysis of ruin probability. The
lassi
al Cram�er-Lundberg model introdu
ed in 1903 and signi�
antlydeveloped during the �rst part of the 20-th 
entury is still thebase for many investigations and generalizations. Being a 
orporation,insuran
e 
ompany has a se
ondary but very important task, namely,dividends payment to its shareholders. So, the alternative so-
alled
ost approa
h was started by De Finetti in 1957, see [4℄. Modernperiod in a
tuarial s
ien
es evolution is 
hara
terized by 
onsiderationof a larger 
lass of sto
hasti
 pro
esses. Not only 
ompound Poissonpro
esses des
ribe insuran
e 
ompany performan
e but renewal andregeneration pro
esses, martingales, di�usion, Markov, semi-Markov andL�evy pro
esses. Moreover, interplay between insuran
e and �nan
eis typi
al nowadays, see, e.g. [5℄. Banks are selling insuran
e and
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e 
ontra
ts whereas insuran
e 
ompanies are interested ininvestment and 
apital inje
tions, see, e.g. [6�8℄.Sin
e de
isions about reinsuran
e and dividends payment are usuallymade at the end of the year dis
rete-time models were introdu
ed,see, e.g. [9�12℄. It turned out that su
h models 
an also be used forapproximation of 
ontinuous-time ones.We begin by treating the models studied in [11,12℄ and their generali-zation to the 
ase of two-dimensional 
laims. Optimal and asymptoti
allyoptimal poli
ies are established solving Bellman fun
tional equations.Systems stability is veri�ed by means of Sobol' method and lo
alsensitivity analysis. The results are used to implement a numeri
alalgorithm letting obtain some approximations to optimal solutionsfor 
ontinuous-time models. Convergen
e rate to limit distribution isalso studied using various metri
s, see, e.g. [13℄. In 
ase of unknowndistributions of underlying pro
esses it is appropriate to use sto
hasti
orders to 
ompare various models. Finally, we apply empiri
al pro
esses(see [14℄) to get statisti
al inferen
e enabling us to use a sequen
e ofobservations for 
al
ulations of optimal poli
y parameters.Referen
es1. Oakley J.E. and O'Hagan A. Probabilisti
 sensitivity analysis of
omplex models: a Bayesian approa
h // J. R. Statist. So
. B.2004. V. 66, Part 3. P. 751�769.2. Saltelli A., Tarantola S. and Campolongo F. Sensitivity analysis asan ingredient of modeling // Statist. S
i. 2000. V. 15. P. 377�395.3. Sobol' I.M. Sensitivity analysis for nonlinear mathemati
al models// Math. Modlng Comput. Expt. 1993. V. 1. P. 407�414.4. De Finetti B. Su un'impostazione alternativa della teoria 
ollettivadel ris
hio // Transa
tions of the XV-th International Congress ofA
tuaries. 1957. V. 2. P. 433�443.5. Yang H., Gao Wei and Li J. Asymptoti
 ruin probabilities for adis
rete-time risk model with dependent insuran
e and �nan
ialrisks // S
andinavian A
tuarial Journal. 2016. � 1. P. 1�17.6. Di
kson D.C.M. and Waters H.R. Some optimal dividendsproblems // ASTIN Bulletin. 2004. V. 34. P. 49�74.7. Eisenberg J., S
hmidli H. Optimal 
ontrol of 
apital inje
tions byreinsuran
e in a di�usion approximation // Bl�atter der DGVFM.2009. V. 30, � 1. P. 1�13.8. Kulenko N., S
hmidli H. Optimal dividend strategies in a Cram�er-Lundberg model with 
apital inje
tions // Insuran
e: Mathemati
s
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s. 2008. V. 43. P. 270�278.9. Bulinskaya E. On the 
ost approa
h in insuran
e // Review ofApplied and Industrial Mathemati
s. 2003. V. 10, � 2. P. 276�286.10. Li Sh., Lu Yi and Garrido J. A review of dis
rete-time risk models// Rev. R.A
ad. Cien. Serie A. Mat. 2009. V. 103, � 2. P. 321�337.11. Bulinskaya E. Asymptoti
 Analysis of Insuran
e Models with BankLoans // New Perspe
tives on Sto
hasti
 Modeling and DataAnalysis. Athens, Gree
e: ISAST, 2014. P. 255�270.12. Bulinskaya E. and Gromov A. Asymptoti
 Behavior of thePro
esses Des
ribing Some Insuran
e Models // Communi
ationsin Statisti
s - Theory and Methods. 2016. V. 45, � 6. P. 1778�1793.13. Ra
hev S.T., Stoyanov S.V. and Fabozzi F.J. Advan
ed Sto
hasti
Models, Risk Assessment, Portfolio Optimization. Hoboken, NewJersey: J.Wiley and Sons. 2008.14. Shora
k G.R., Wellner J.A. Empiri
al Pro
esses with Appli
ationto Statisti
s. New York: J.Wiley and Sons. 1986.Stability of the solution in the optimalreinsuran
e problemJ.V. GusakLomonosov Mos
ow State University, Mos
ow, RussiaWe 
onsider a periodi
 - review insuran
e model under thefollowing assumptions. One-period insuran
e 
laims form a sequen
eof independent identi
ally distributed nonnegative random variables
{Xk}, k ≥ 1. Ea
h Xk has a distribution as that of the random variable
X with �nite mean and 
umulative distribution fun
tion FX .In order to avoid ruin the insurer maintains the 
ompany surplus abovea 
hosen level a by 
apital inje
tions at the end of ea
h period. Anonproportional reinsuran
e is applied for minimization of total expe
teddis
ounted inje
tions hnX

(u) during a given planning horizon of nperiods, where u is the initial surplus of the insuran
e 
ompany, u ≥ a.Insuran
e and reinsuran
e premiums are 
al
ulated using the expe
tedvalue prin
iple. The optimal reinsuran
e strategy for this problem hasbeen established in the paper[1℄.This work relies on the results obtained in [1℄ and 
onsiders thestability of minimal expe
ted inje
tions to the �u
tuation of 
laimdistribution. More pre
isely, suppose one-period 
laim Xk, k ≥ 1 has thesame distribution as random variable Y with 
umulative distribution
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tion FY , whi
h in turn di�ers from fun
tion FX . In this 
ase, howdoes the amount of optimal 
apital inje
tions 
hange? The followingtheorem gives us the answer to this question under the assumptionthat random variables X and Y are 
lose in Kantorovi
h metri
. Themetri
 is 
al
ulated a

ording to the de�nition in [2℄ and equals to
κ(X,Y ) =

∫∞
0

|FX(t)− FY (t)|dt.Theorem. Let X and Y be nonnegative random variables with �nitemean de�ned on the same probability spa
e, than the following inequalityholds for every n ≥ 1

sup
u≥a

|hnX
(u)− hnY

(u)| ≤
(

n−1∑

i=0

αiCn−i

)
(1 + l +m)κ(X,Y ),where 0 < α < 1 is a dis
ount 
oe�
ient, l > 1 and m > l denote safetyloadings on the insuran
e and reinsuran
e premiums respe
tively, hnYrefers to minimal dis
ounted expe
ted inje
tions when one-period 
laimdistribution fun
tion is equal to FY , Cn−i =
1−αn−i

1−α .Due to the fa
t that in pra
ti
e theoreti
al distributions are usuallyunknown, we also investigate the stability of the solution, whendistribution fun
tions FX , FY are repla
ed by their empiri
al estimates.Referen
es1. Bulinskaya E.V., Gusak J.V, Muromskaya A.A. Dis
rete-timeInsuran
e Model with Capital Inje
tions and Reinsuran
e.Methodology and Computing in Applied Probability. 2015. V.17,4, P. 899�914.2. Ra
hev S.T., Klebanov L., Stoyanov S.V., Fabozzi F. The Methodsof Distan
es in the Theory of Probability and Statisti
s. Springer-Verlag New York, 2013.On a 
lassi
al risk model with a step barrierdividend strategyA. MuromskayaLomonosov Mos
ow State University, Mos
ow, RussiaWe 
onsider an insuran
e 
ompany performan
e with dividends pay-ment. A

ording to the Cramer-Lundberg model, the surplus of the
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e 
ompany paying dividends is as follows:
X(t) = x+ ct− S(t)−D(t), t ≥ 0.Here {S(t)} is a 
ompound Poisson pro
ess with intensity λ,D(t) denotestotal dividends paid until t and x = X(0). Premiums are a
quired
ontinuously at the rate c and the 
laim amounts are nonnegative i.i.d.random variables with distribution fun
tion F (y). Let T also denote thetime of ruin, namely, T = inf{t : X(t) < 0}.Dividends are paid in 
onformity with some dividend strategy. Oneof the most popular dividend strategies are so-
alled 
onstant barrierstrategies. In the framework of the 
onstant barrier strategy with level

b, no dividends are paid whenever X(t) < b and dividends at the rate care paid whenever X(t) = b. If X(t) > b, an amount X(t)− b is paid outimmediately as dividends. Constant barrier strategies were 
onsidered inmany papers devoted to dividend theory, su
h as Gerber et al. [1℄ andBuhlmann [2℄. However 
onstant barrier strategies have one signi�
antdisadvantage, namely, the barrier level 
an not be 
hanged throughoutthe life of the insuran
e 
ompany. In this regard we examine modi�edbarrier strategies, a

ording to whi
h the barrier level b 
an be 
hangedafter the moments of 
laim o

urren
es Ti (step barrier strategies).At �rst let us 
onsider the model with the barrier that 
an be 
hangedonly a �nite number of times (after ea
h of the �rst (n − 1) 
laimo

urren
es). In this 
ase barrier level 
hanges up to the ruin time in
onformity with the following rule: b = bi on the interval [Ti−1, Ti) for
1 ≤ i ≤ n − 1 (we assume T0 = 0) and b = bn if t ≥ Tn−1. The stepbarrier fun
tion is supposed to be nonde
reasing: b1 ≤ b2 ≤ . . . ≤ bn.Let V (x, b) and V (x, b1, . . . , bn) denote the expe
ted dis
ounted divi-dends paid until ruin in the models with 
onstant barrier and step barrierstrategies respe
tively. Then the following theorem holds true.Theorem 1. For all 0 ≤ x ≤ b1 and b1 ≤ b2 ≤ . . . ≤ bn, n ≥ 2, thefun
tion V (x, b1, . . . , bn) 
an be expressed as:
V (x, b1, . . . , bn) = V (x, bn) +

n−1∑

i=1

[1− V ′(bi, bn)]V[Ti−1,Ti)(x, b1, . . . , bi),where V[Ti−1,Ti)(x, b1, . . . , bi) is the mathemati
al expe
tation of thedis
ounted dividends paid on [Ti−1, Ti).Remark. Fun
tions V[Tk−1,Tk)(x, b1, . . . , bk), 1 ≤ k ≤ n − 1, 
an be
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al
ulated sequentially with the help of the law of total probability:
V[0,T1)(x, b1) =

c

λ+ δ
e−(λ+δ)

b1−x

c ,

V[Tk−1,Tk)(x, b1, . . . , bk) =

=

∫ b1−x

c

0

λe−(λ+δ)t

∫ x+ct

0

V[Tk−2,Tk−1)(x+ ct− y, b2, . . . , bk)dF (y)dt+

+

∫ ∞

b1−x

c

λe−(λ+δ)t

∫ b1

0

V[Tk−2,Tk−1)(b1 − y, b2, . . . , bk)dF (y)dt, k ≥ 2.Now let us 
onsider the probability of ruin ψ(x) = P (T <∞|X(0) = x)in the model with a barrier level that 
an be 
hanged after every 
laimo

urren
e Tj , j ≥ 1, (i.e. in�nite number of times). It is also assumedthat the equation
λ+ rc = λ

∫ ∞

0

erydF (y)has the unique positive solution R. If this solution exists we 
all it theadjustment 
oe�
ient or the Lundberg exponent ([3℄, [4℄). The 
oe�
ient
R plays an important role in the estimation of the ruin probabilities, inparti
ular, in our model we have the following result.Theorem 2. The ruin probability ψ(x) satis�es the inequality

ψ(x) ≤ e−Rx +
Rc

λ

∞∑

i=1

e−Rbi .This theorem is a generalization of the Lundberg inequality whi
h isproved for the 
lassi
al risk model without dividend payments.Examples of the step barrier fun
tions, for whi
h the upper boundfor the ruin probability is less than 1, will be given. Note that in theframework of the 
onstant barrier dividend strategy the ruin of theinsuran
e 
ompany o

urs almost surely.Referen
es1. Gerber H.U., Shiu E.S.W. and Smith N. Maximizing dividendswithout bankrupt
y // ASTIN Bulletin. 2006. V. 1, � 36. P. 5�23.2. Buhlmann H. Mathemati
al methods in risk theory. Berlin, Heidel-berg: Springer-Verlag, 1970.3. Bulinskaya E.V. Risk theory and reinsuran
e, part 2 (in Russian).Mos
ow: Mos
ow State University, 2006.
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ontrol in insuran
e. London: Springer-Verlag, 2008.Weakly super
riti
al bran
hing walks withheavy tails∗A.I. Rytova and E.B. YarovayaLomonosov Mos
ow State University, Mos
ow, RussiaSteklov Mathemati
al Institute, Mos
ow, RussiaBran
hing random walks (BRWs) are usually des
ribed in termsof birth, death and walk of parti
les. We 
onsider a 
ontinuous-time symmetri
 BRW on à multidimensional latti
e. In [1℄, a detaileddes
ription of su
h BRW for the 
ase of �nite varian
e of jumps and onesour
e of bran
hing is given. In the present work we study the 
ase ofBRWs with heavy tails when intensities of the underlying random walkare subje
ted to a 
ondition leading to in�nite varian
e of jumps, see,e.g., [2℄.Quite a number of authors investigated the random walks withheavy tails, see the bibliography in [3℄. Most of them, as a rule, haverestri
ted themselves to 
onsideration of the one-dimensional 
ase. Inthe multidimensional 
ase of a spatially homogeneous symmetri
 randomwalk with in�nite varian
e of jumps, proofs of global limit theoremsfor the transition probabilities of a random walk, in the 
ase when thetemporal and spatial variables jointly tend to in�nity, 
an be found in[4℄. The 
orresponding results were proved under an additional regularity
ondition imposed on the transition intensities of a random walk. In[5℄, a multidimensional analog of the well-known Watson's lemma (see,e.g., [6℄) was proven whi
h helps to investigate in [5℄ an asymptoti
behaviour of the transition probabilities for �xed spatial 
oordinateswithout making any additional assumptions on the transition intensities.The goal of the work is to apply obtained results to �nd theasymptoti
 behavior of the moments for BRWs with in�nite varian
e ofjumps and the only bran
hing sour
e. Employing the s
heme suggestedin [1℄ for BRWs with a �nite varian
e of jumps, we �nd the generatingfun
tions, di�erential and integral equations for the moments of thenumbers of parti
les, as in an arbitrary latti
e point as on the entirelatti
e for BRWs with in�nite varian
e of jumps. Abandonment of the�niteness of the varian
e of jumps, as was shown in [2,7℄, leads to 
hanges
∗This resear
h is supported by the Russian S
ien
e Foundation, proje
t no. 14-21-00162.
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omes transient evenon one- and two-dimensional latti
es. The minimal value of the intensityof the bran
hing sour
e, under whi
h in the spe
trum of the operatordes
ribing the evolution of the mean numbers of parti
les there appeara positive eigenvalue, is 
alled 
riti
al. The asymptoti
 behaviour ofGreen's fun
tions and eigenvalues of the evolutionary operator, for theBRW with heavy tails and intensities of the sour
e ex
eeding but still
lose the 
riti
al value, is studied in [8℄. Noti
e that their behaviourdi�ers drasti
ally from the 
ase of �nite varian
e of jumps. Using theresults of [8℄ we obtain a number of statements on asymptoti
 behaviorof the �rst moments of the numbers of parti
les for weakly super
riti
alBRWs. The obtained results are generalized then to the 
ase of a �nitenumber of bran
hing sour
es for weakly super
riti
al BRWs with heavytails. Referen
es1. Yarovaya E.B. Bran
hing Random Walks in a Non-homogeneousEnvironment. Mos
ow: Tsentr Prikladnykh Issledovanii priMekhaniko-Matemati
heskom Fakul'tete MGU, 2007. [in Russian℄2. Yarovaya E. Bran
hing Random Walks with Heavy Tails //Communi
ations in Statisti
s - Theory and Methods. 2013.No. 42:16. P. 2301�2310.3. Borovkov A., Borovkov K. Asymptoti
 Analysis of Random Walks.Heavy-Tailed Distributions. Cambridge: Cambridge UniversityPress, 2008.4. Agbor A.,Mol
hanov S., Vainberg B. Global limit theorems on the
onvergen
e of multidimensional random walks to stable pro
esses//Sto
hasti
s and Dynami
s. 2015. No. 15:3. 1550024.5. Rytova A.I., Yarovaya E.B. Multidimensional Watson Lemma andIts Appli
ations // Mathemati
al Notes. 2016. Vol. 99, No. 3.P. 64�70.6. Fedoryuk M.V. Asymptoti
s: Integrals and Series, in Mathemati
alReferen
e Library. Mos
ow: Nauka, 1987. [in Russian℄7. Yarovaya E. Criteria for Transient Behavior of Symmetri
Bran
hing Random Walks on Z and Z
2 // New Perspe
tives onSto
hasti
 Modeling and Data Analysis. Athens: ISAST, 2014.P. 283�294,8. Yarovaya E.B. The Stru
ture of the Positive Dis
rete Spe
trum ofthe Evolution Operator Arising in Bran
hing Random Walks //Doklady Mathemati
s. 2015. Vol. 92, No. 1. P. 1�4.
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esses and some appli
ationsA. SokolovaLomonosov Mos
ow State University, Mos
ow, RussiaLet {Tn}n≥1 be a sequen
e of independent non-negative randomvariables, Fj is the distribution fun
tion of variable Tql+j for some �xedinteger l > 1 , q = 1, 2, . . .. Let {Xi}i=0,...,k−1 be another sequen
eof independent random variables (r.v.), ea
h Xi has its distributionfun
tion Gi. The sequen
es {Tn} and {Xi} are also supposed to beindependent.Let us de�ne generalized delayed periodi
al renewal pro
ess in thefollowing way: Sn = X0+ . . .+Xn, 0 ≤ n ≤ k−1, whereas Sn = Sk−1+
T1 + . . .+ Tn−k+1 for n ≥ k.The partial sums Sn are 
alled the renewals and the summands Tiand Xi are the intervals between the renewals.The main obje
t of our 
onsideration is the 
ounting pro
ess

Nt = min{k ≥ 0 : Sk > t},representing the number of renewals that have o

urred by time t.The purpose of the talk is investigation of the asymptoti
behaviour of de�ned renewal pro
ess Nt and appli
ation of obtainedresults to the risk theory.Using tauberian theorem (see, e.g. [1℄) the asymptoti
 form of renewalfun
tion is found. The results 
on
erning simple renewal pro
esses arealso used (see, e.g. [2℄, [3℄, [4℄). The analogues of the strong law of largenumbers, 
entral limit theorem and fun
tional limit theorem are proved.The main steps of resear
h:1. Finding the limit behaviour and distribution of the pro
ess on thebasis of asymptoti
 behaviour of sequen
e of renewals.2. Introdu
tion of the auxiliary random elements by means of
entering and normalization of partial sums of pro
ess.3. Proof of the weak 
onvergen
e of auxiliary elements to a Wienerpro
ess.4. At last we pro
eed to the pro
ess 
onstru
ted a

ording to 
ountingpro
ess Nt using the theorem about the random 
hange of measure(see, e.g. [5℄).
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al renewalpro
ess and Nt a 
ounting pro
ess asso
iated with it. Suppose thatall the summands Tql+i have �nite mathemati
al expe
tation µi < ∞,
i = 1, . . . , l . Then with probability 1

Nt

t
→ l

µ
,where µ = µ1 + . . .+ µl.Theorem 2. Suppose that r.v.'s Tql+i have �nite mathemati
alexpe
tations µi < ∞ and varian
es 0 < σ2

i < ∞, respe
tively, i =
1, . . . , l, and r.v.'s Xj have �nite mathemati
al expe
tations νj. Then,as t→ ∞, we have

Nt − tlµ−1

σl
√
tµ−3

d→ ξ ∼ N(0, 1),where µ = µ1 + . . . + µl, σ2 = σ2
1 + . . . + σ2

l , d→ denotes weak
onvergen
e, and ξ ∼ N(0, 1) means that r.v. ξ has standard Gaussiandistribution.Theorem 3. Let us de�ne the sequen
e of random fun
tions
Zn(t, ω) =

Nnt(ω)− ntlµ−1

σlµ−3/2
√
n

,where µ = µ1 + . . .+ µl, σ
2 = σ2

1 + . . .+ σ2
l .For de�ned random fun
tions Zn(t, ω) the following expression holds:

Zn
D→W,where W is a Wiener pro
ess and D→ denotes weak 
onvergen
e in thespa
e D[0, 1] . Referen
es1. Feller W. An Introdu
tion to Probability Theory and itsAppli
ations, Vol. 2. New York: Wiley, 1971.2. Afanasyeva L., Bulinskaya E. Sto
hasti
 Pro
esses in QueueingTheory and Inventory Control. Mos
ow: Mos
ow State UniversityPress, 1980. [In Russian.℄3. Borovkov A. Probability Theory. Mos
ow: Editorial URSS, 1999.[In Russian.℄4. Cox D.R. Renewal Theory. Methuen and Company, Ltd. 1962.5. Billingsley P. Convergen
e of Probability Measures. New York:Wiley, 1968.
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hasti
 systemsBran
hing random walks.Spe
tral approa
h∗E.B. YarovayaLomonosov Mos
ow State University, Mos
ow, RussiaSteklov Mathemati
al Institute, Mos
ow, RussiaSto
hasti
 pro
esses with generation and transport of parti
les areused in di�erent areas of nature s
ien
es: statisti
al physi
s, 
hemi
alkineti
s, et
. [1-2℄. Behavior of pro
esses with generation and transportof parti
les in many ways determined by properties of a parti
le motionand a dimension of the spa
e in whi
h the parti
les evolve. In [3℄for studying a 
hange of homopolymers spatial stru
ture under thein�uen
e of temperature there was suggested an approa
h based on aresolvent analysis of the evolutionary operator. Unlike to [3℄ we 
onsidera multidimensional integer latti
e instead of R
d and a random walkinstead of a Brownian motion [4℄. The des
ription of a random walkin terms of Green's fun
tion allows us to o�er a general approa
h toinvestigation of random walks with �nite as well as with in�nite varian
eof jump.We 
onsider a 
ontinuous-time symmetri
 bran
hing random walkon a multidimensional latti
e with a �nite set of the parti
le generation
entres, i.e. bran
hing sour
es [5℄. Bran
hing random walks modelsare relevant in numerous appli
ations, in
luding population studies.Parti
ular attention is paid to bran
hing random walks with in�nitevarian
e jumps. Su
h bran
hing random walks 
an be used in modelingof 
omplex sto
hasti
 systems with singular spa
ial dynami
s, implyingthe existen
e of heavy-tailed distributions of random walk jumps [6℄.The main obje
t of study is the evolutionary operator for the meannumber of parti
les both at an arbitrary point and on the entirelatti
e. The existen
e of positive eigenvalues in the spe
trum of anevolutionary operator results in the exponential growth of the numberof parti
les in bran
hing random walks, 
alled super
riti
al in su
h
ase. For super
riti
al bran
hing random walks, it is shown that theamount of positive eigenvalues of the evolutionary operator, 
ountingtheir multipli
ity, does not ex
eed the amount of bran
hing sour
es onthe latti
e, while the maximal of these eigenvalues is always simple [6℄.We demonstrate that the appearan
e of multiple lower eigenvalues inthe spe
trum of the evolutionary operator 
an be 
aused by a kind

∗This resear
h is supported by the Russian S
ien
e Foundation, proje
t no. 14-21-00162.
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 systems 221of `symmetry' in the spatial 
on�guration of bran
hing sour
es [5℄.The presented results are based on Green's fun
tion representation oftransition probabilities of an underlying random walk and 
over not onlythe 
ase of the �nite varian
e of jumps but also a less studied 
ase ofin�nite varian
e of jumps. Referen
es1. G�artner J., Mol
hanov S. Paraboli
 problems for the Andersonmodel. I. Intermitten
y and related topi
s // Comm. Math. Phys.1990. No. 132:3 P. 613�655.2. G�artner J., Mol
hanov S. Paraboli
 problems for the Andersonmodel. II. Se
ond-order asymptoti
s and stru
ture of high peaks.// Probab. Theory Related Fields. 1998. No. 111:1, P. 7�55.3. Cranston M., Koralov L., Mol
hanov S., and B. Vainberg B.Continuous model for homopolymers // J. Fun
t. Anal. (2009),No. 256:82, P. 656�2696.4. Mol
hanov S., Yarovaya E. //Pro
eedings of the Steklov Instituteof Mathemati
s. 2013. Vol. 282, P. 186�201.5. Yarovaya E.B. Positive Dis
rete Spe
trum of the EvolutionaryOperator of Super
riti
al Bran
hing Walks with Heavy Tails //Methodology and Computing in Applied Probability. First online:12 Mar
h, 2016. P. 1�17.6. Yarovaya E.B. The Stru
ture of the Positive Dis
rete Spe
trum ofthe Evolution Operator Arising in Bran
hing Random Walks //Doklady Mathemati
s. 2015. Vol. 92, No. 1. P. 1�4.Asymptoti
 properties of marginaldistributions in a polling system with bat
hrenewal inputs and limited servi
e poli
y∗A.V. Zorine and M.A. FedotkinNational Resear
h Loba
hevsky State University of Nizhni Novgorod,Nizhni Novgorod, RussiaConsider a polling system with m < ∞ stations, bat
h renewalinputs, limited servi
e poli
y, and �xed swit
h-over times. Inter-arrival
∗This work was ful�lled as a part of State Budget Resear
h and Developmentprogram No. 01201456585 �Mathemati
al modeling and analysis of sto
hasti
evolutionary systems and de
ision pro
esses� of National Resear
h Loba
hevsky StateUniversity of Nizhni Novgoroda and supported by State Program �Promoting the
ompetitiveness among world's leading resear
h and edu
ational 
enters�.
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omplex sto
hasti
 systemstimes at the j-th station are i.i.d. non-negative random variables withprobability density fun
tion aj(t). A bat
h is size b with probability fj(b),
b = 1, 2, . . . . Server sojourn time at the j-th station is a non-random
onstant T2j−1 > 0. During this interval at most ℓj 
ustomers at thestation 
an be servi
ed. These may be both the 
ustomers present atthe station at the beginning of the servi
e slot and the newly arriving
ustomers. Servi
e times of individual 
ustomers are not spe
i�ed andare mutually dependent in a way they manage to leave before the slotends. Servi
ed 
ustomers leave the queueing system. After station j < mthe server swit
hes to the next station (j+1), after the station j = m, thestation 1 is visited. Swit
h-over time is a non-random 
onstant T2j > 0.We observe the queueing system at epo
hs τi, i = 0, 1, . . . of servi
eperiods and swit
h-over periods termination. Denote by Γi ∈ Γ, Γ =
= {Γ(1),Γ(2), . . . ,Γ(2m)} the server state during time interval (τi−1, τi],
i = 1, 2, . . . , by Γ0 ∈ Γ the server state at time τ0, where Γ(2j−1) standsfor servi
e at the station j and Γ(2j) stands for swit
h-over from thestation j to the station j + 1 if j < m and from station m to station 1if j = m. Let κj,i be the queue length at the station j at time τi, ζj,i bethe residual inter-arrival time at time τi at the station j, i = 0, 1, . . . .Put κi = (κ1,i, . . . , κm,i), ζi = (ζ1,i, . . . , ζm,i). In [1℄ a probability spa
e
(Ω,F,P) was 
onstru
ted and a sto
hasti
 sequen
e

{(Γi, κi, ζi); i = 0, 1, . . .} (1)was de�ned on it and the Markov property was proven for sequen
e (1)and for sequen
es
{(Γi, κj,i, ζj,i); i = 0, 1, . . .}, j = 1, . . . ,m. (2)Sto
hasti
 sequen
es (1) and (2) are general Markov 
hains [2℄ withun
ountable state spa
es. Further, given that for ea
h j = 1, . . . , mthere exists a t0j > 0 su
h that aj(t) = 0 for t < t0j and aj(t) > 0 for

t > t0j and fj(1) > 0, in [1℄ the general Markov 
hain (1) was proven tobe ψ-irredu
ible [2℄. Moreover, if ea
h aj(t) is 
ontinuous for t > t0j thensome small sets [2℄ of the general Markov 
hain (1) are known.Denote by Qj,i(r, x, y) = P({ω : Γi = Γ(r), κj,i = x, ζj,i < y}), j = 1,. . . , m marginal probability distributions for Markov 
hains (2) and by
Ψj,i(z, s, r) =

∞∑

x=0

∞∫

0

zxe−sy dyQj,i(r, x, y)their integral transforms. Set λj = ∞∫

0

taj(t) dt and λ̄j = λj
∞∑
b=1

b fj(b).We 
laim the following.
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 systems 223Theorem 1. Let series f̂j(z) = ∞∑

b=1

b fj(b) and fun
tions Ψj,0(z, s, r),
s > 0, r = 1, 2, . . . , 2m be analyti
 in an open disk |z| < 1 + ε for some
ε > 0 and some j = 1, . . . , m. Further, let

λ̄j(T1 + . . .+ T2m)− ℓj < 0.Then the fun
tions Ψj,i(z, s, r), s > 0, r = 1, 2, . . . , 2m, and i = 0, 1, . . .are uniformly bounded w.r.t. z in an open disk |z| 6 1 + ε1, 0 < ε1 < ε,and the sequen
e {Eκj,i; i = 0, 1, . . .} is bounded.Theorem 1 plays an elemental role in establishing a su�
ient
ondition for the existen
e of a stationary probability distribution forthe Markov 
hain (1) by iterative-dominating approa
h.Referen
es1. Zorine A.V. A 
yberneti
 model of 
y
li
 
ontrol of 
on�i
ting �owswith an after-e�e
t // U
henye Zapiski Kazanskogo Universiteta.Seriya Fiziko-Matemati
heskie Nauki. 2014. V. 156, � 3. P. 66�75(in Russian).2. Meyn S.P., Tweedie R.L. Markov 
hains and sto
hasti
 stability.London: Springer-Verlag, 1993.
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